bindgen/clang.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
//! A higher level Clang API built on top of the generated bindings in the
//! `clang_sys` module.
#![allow(non_upper_case_globals, dead_code)]
use crate::ir::context::BindgenContext;
use clang_sys::*;
use std::ffi::{CStr, CString};
use std::fmt;
use std::hash::Hash;
use std::hash::Hasher;
use std::os::raw::{c_char, c_int, c_longlong, c_uint, c_ulong, c_ulonglong};
use std::{mem, ptr, slice};
/// Type representing a clang attribute.
///
/// Values of this type can be used to check for different attributes using the `has_attrs`
/// function.
pub struct Attribute {
name: &'static [u8],
kind: Option<CXCursorKind>,
token_kind: CXTokenKind,
}
impl Attribute {
/// A `warn_unused_result` attribute.
pub const MUST_USE: Self = Self {
name: b"warn_unused_result",
// FIXME(emilio): clang-sys doesn't expose `CXCursor_WarnUnusedResultAttr` (from clang 9).
kind: Some(440),
token_kind: CXToken_Identifier,
};
/// A `_Noreturn` attribute.
pub const NO_RETURN: Self = Self {
name: b"_Noreturn",
kind: None,
token_kind: CXToken_Keyword,
};
/// A `[[noreturn]]` attribute.
pub const NO_RETURN_CPP: Self = Self {
name: b"noreturn",
kind: None,
token_kind: CXToken_Identifier,
};
}
/// A cursor into the Clang AST, pointing to an AST node.
///
/// We call the AST node pointed to by the cursor the cursor's "referent".
#[derive(Copy, Clone)]
pub struct Cursor {
x: CXCursor,
}
impl fmt::Debug for Cursor {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(
fmt,
"Cursor({} kind: {}, loc: {}, usr: {:?})",
self.spelling(),
kind_to_str(self.kind()),
self.location(),
self.usr()
)
}
}
impl Cursor {
/// Get the Unified Symbol Resolution for this cursor's referent, if
/// available.
///
/// The USR can be used to compare entities across translation units.
pub fn usr(&self) -> Option<String> {
let s = unsafe { cxstring_into_string(clang_getCursorUSR(self.x)) };
if s.is_empty() {
None
} else {
Some(s)
}
}
/// Is this cursor's referent a declaration?
pub fn is_declaration(&self) -> bool {
unsafe { clang_isDeclaration(self.kind()) != 0 }
}
/// Is this cursor's referent an anonymous record or so?
pub fn is_anonymous(&self) -> bool {
unsafe { clang_Cursor_isAnonymous(self.x) != 0 }
}
/// Get this cursor's referent's spelling.
pub fn spelling(&self) -> String {
unsafe { cxstring_into_string(clang_getCursorSpelling(self.x)) }
}
/// Get this cursor's referent's display name.
///
/// This is not necessarily a valid identifier. It includes extra
/// information, such as parameters for a function, etc.
pub fn display_name(&self) -> String {
unsafe { cxstring_into_string(clang_getCursorDisplayName(self.x)) }
}
/// Get the mangled name of this cursor's referent.
pub fn mangling(&self) -> String {
unsafe { cxstring_into_string(clang_Cursor_getMangling(self.x)) }
}
/// Gets the C++ manglings for this cursor, or an error if the manglings
/// are not available.
pub fn cxx_manglings(&self) -> Result<Vec<String>, ()> {
use clang_sys::*;
unsafe {
let manglings = clang_Cursor_getCXXManglings(self.x);
if manglings.is_null() {
return Err(());
}
let count = (*manglings).Count as usize;
let mut result = Vec::with_capacity(count);
for i in 0..count {
let string_ptr = (*manglings).Strings.add(i);
result.push(cxstring_to_string_leaky(*string_ptr));
}
clang_disposeStringSet(manglings);
Ok(result)
}
}
/// Returns whether the cursor refers to a built-in definition.
pub fn is_builtin(&self) -> bool {
let (file, _, _, _) = self.location().location();
file.name().is_none()
}
/// Get the `Cursor` for this cursor's referent's lexical parent.
///
/// The lexical parent is the parent of the definition. The semantic parent
/// is the parent of the declaration. Generally, the lexical parent doesn't
/// have any effect on semantics, while the semantic parent does.
///
/// In the following snippet, the `Foo` class would be the semantic parent
/// of the out-of-line `method` definition, while the lexical parent is the
/// translation unit.
///
/// ```c++
/// class Foo {
/// void method();
/// };
///
/// void Foo::method() { /* ... */ }
/// ```
pub fn lexical_parent(&self) -> Cursor {
unsafe {
Cursor {
x: clang_getCursorLexicalParent(self.x),
}
}
}
/// Get the referent's semantic parent, if one is available.
///
/// See documentation for `lexical_parent` for details on semantic vs
/// lexical parents.
pub fn fallible_semantic_parent(&self) -> Option<Cursor> {
let sp = unsafe {
Cursor {
x: clang_getCursorSemanticParent(self.x),
}
};
if sp == *self || !sp.is_valid() {
return None;
}
Some(sp)
}
/// Get the referent's semantic parent.
///
/// See documentation for `lexical_parent` for details on semantic vs
/// lexical parents.
pub fn semantic_parent(&self) -> Cursor {
self.fallible_semantic_parent().unwrap()
}
/// Return the number of template arguments used by this cursor's referent,
/// if the referent is either a template instantiation. Returns `None`
/// otherwise.
///
/// NOTE: This may not return `Some` for partial template specializations,
/// see #193 and #194.
pub fn num_template_args(&self) -> Option<u32> {
// XXX: `clang_Type_getNumTemplateArguments` is sort of reliable, while
// `clang_Cursor_getNumTemplateArguments` is totally unreliable.
// Therefore, try former first, and only fallback to the latter if we
// have to.
self.cur_type()
.num_template_args()
.or_else(|| {
let n: c_int =
unsafe { clang_Cursor_getNumTemplateArguments(self.x) };
if n >= 0 {
Some(n as u32)
} else {
debug_assert_eq!(n, -1);
None
}
})
.or_else(|| {
let canonical = self.canonical();
if canonical != *self {
canonical.num_template_args()
} else {
None
}
})
}
/// Get a cursor pointing to this referent's containing translation unit.
///
/// Note that we shouldn't create a `TranslationUnit` struct here, because
/// bindgen assumes there will only be one of them alive at a time, and
/// disposes it on drop. That can change if this would be required, but I
/// think we can survive fine without it.
pub fn translation_unit(&self) -> Cursor {
assert!(self.is_valid());
unsafe {
let tu = clang_Cursor_getTranslationUnit(self.x);
let cursor = Cursor {
x: clang_getTranslationUnitCursor(tu),
};
assert!(cursor.is_valid());
cursor
}
}
/// Is the referent a top level construct?
pub fn is_toplevel(&self) -> bool {
let mut semantic_parent = self.fallible_semantic_parent();
while semantic_parent.is_some() &&
(semantic_parent.unwrap().kind() == CXCursor_Namespace ||
semantic_parent.unwrap().kind() ==
CXCursor_NamespaceAlias ||
semantic_parent.unwrap().kind() == CXCursor_NamespaceRef)
{
semantic_parent =
semantic_parent.unwrap().fallible_semantic_parent();
}
let tu = self.translation_unit();
// Yes, this can happen with, e.g., macro definitions.
semantic_parent == tu.fallible_semantic_parent()
}
/// There are a few kinds of types that we need to treat specially, mainly
/// not tracking the type declaration but the location of the cursor, given
/// clang doesn't expose a proper declaration for these types.
pub fn is_template_like(&self) -> bool {
matches!(
self.kind(),
CXCursor_ClassTemplate |
CXCursor_ClassTemplatePartialSpecialization |
CXCursor_TypeAliasTemplateDecl
)
}
/// Is this Cursor pointing to a function-like macro definition?
pub fn is_macro_function_like(&self) -> bool {
unsafe { clang_Cursor_isMacroFunctionLike(self.x) != 0 }
}
/// Get the kind of referent this cursor is pointing to.
pub fn kind(&self) -> CXCursorKind {
self.x.kind
}
/// Returns true if the cursor is a definition
pub fn is_definition(&self) -> bool {
unsafe { clang_isCursorDefinition(self.x) != 0 }
}
/// Is the referent a template specialization?
pub fn is_template_specialization(&self) -> bool {
self.specialized().is_some()
}
/// Is the referent a fully specialized template specialization without any
/// remaining free template arguments?
pub fn is_fully_specialized_template(&self) -> bool {
self.is_template_specialization() &&
self.kind() != CXCursor_ClassTemplatePartialSpecialization &&
self.num_template_args().unwrap_or(0) > 0
}
/// Is the referent a template specialization that still has remaining free
/// template arguments?
pub fn is_in_non_fully_specialized_template(&self) -> bool {
if self.is_toplevel() {
return false;
}
let parent = self.semantic_parent();
if parent.is_fully_specialized_template() {
return false;
}
if !parent.is_template_like() {
return parent.is_in_non_fully_specialized_template();
}
true
}
/// Is the referent any kind of template parameter?
pub fn is_template_parameter(&self) -> bool {
matches!(
self.kind(),
CXCursor_TemplateTemplateParameter |
CXCursor_TemplateTypeParameter |
CXCursor_NonTypeTemplateParameter
)
}
/// Does the referent's type or value depend on a template parameter?
pub fn is_dependent_on_template_parameter(&self) -> bool {
fn visitor(
found_template_parameter: &mut bool,
cur: Cursor,
) -> CXChildVisitResult {
// If we found a template parameter, it is dependent.
if cur.is_template_parameter() {
*found_template_parameter = true;
return CXChildVisit_Break;
}
// Get the referent and traverse it as well.
if let Some(referenced) = cur.referenced() {
if referenced.is_template_parameter() {
*found_template_parameter = true;
return CXChildVisit_Break;
}
referenced
.visit(|next| visitor(found_template_parameter, next));
if *found_template_parameter {
return CXChildVisit_Break;
}
}
// Continue traversing the AST at the original cursor.
CXChildVisit_Recurse
}
if self.is_template_parameter() {
return true;
}
let mut found_template_parameter = false;
self.visit(|next| visitor(&mut found_template_parameter, next));
found_template_parameter
}
/// Is this cursor pointing a valid referent?
pub fn is_valid(&self) -> bool {
unsafe { clang_isInvalid(self.kind()) == 0 }
}
/// Get the source location for the referent.
pub fn location(&self) -> SourceLocation {
unsafe {
SourceLocation {
x: clang_getCursorLocation(self.x),
}
}
}
/// Get the source location range for the referent.
pub fn extent(&self) -> CXSourceRange {
unsafe { clang_getCursorExtent(self.x) }
}
/// Get the raw declaration comment for this referent, if one exists.
pub fn raw_comment(&self) -> Option<String> {
let s = unsafe {
cxstring_into_string(clang_Cursor_getRawCommentText(self.x))
};
if s.is_empty() {
None
} else {
Some(s)
}
}
/// Get the referent's parsed comment.
pub fn comment(&self) -> Comment {
unsafe {
Comment {
x: clang_Cursor_getParsedComment(self.x),
}
}
}
/// Get the referent's type.
pub fn cur_type(&self) -> Type {
unsafe {
Type {
x: clang_getCursorType(self.x),
}
}
}
/// Given that this cursor's referent is a reference to another type, or is
/// a declaration, get the cursor pointing to the referenced type or type of
/// the declared thing.
pub fn definition(&self) -> Option<Cursor> {
unsafe {
let ret = Cursor {
x: clang_getCursorDefinition(self.x),
};
if ret.is_valid() && ret.kind() != CXCursor_NoDeclFound {
Some(ret)
} else {
None
}
}
}
/// Given that this cursor's referent is reference type, get the cursor
/// pointing to the referenced type.
pub fn referenced(&self) -> Option<Cursor> {
unsafe {
let ret = Cursor {
x: clang_getCursorReferenced(self.x),
};
if ret.is_valid() {
Some(ret)
} else {
None
}
}
}
/// Get the canonical cursor for this referent.
///
/// Many types can be declared multiple times before finally being properly
/// defined. This method allows us to get the canonical cursor for the
/// referent type.
pub fn canonical(&self) -> Cursor {
unsafe {
Cursor {
x: clang_getCanonicalCursor(self.x),
}
}
}
/// Given that this cursor points to either a template specialization or a
/// template instantiation, get a cursor pointing to the template definition
/// that is being specialized.
pub fn specialized(&self) -> Option<Cursor> {
unsafe {
let ret = Cursor {
x: clang_getSpecializedCursorTemplate(self.x),
};
if ret.is_valid() {
Some(ret)
} else {
None
}
}
}
/// Assuming that this cursor's referent is a template declaration, get the
/// kind of cursor that would be generated for its specializations.
pub fn template_kind(&self) -> CXCursorKind {
unsafe { clang_getTemplateCursorKind(self.x) }
}
/// Traverse this cursor's referent and its children.
///
/// Call the given function on each AST node traversed.
pub fn visit<Visitor>(&self, mut visitor: Visitor)
where
Visitor: FnMut(Cursor) -> CXChildVisitResult,
{
let data = &mut visitor as *mut Visitor;
unsafe {
clang_visitChildren(self.x, visit_children::<Visitor>, data.cast());
}
}
/// Collect all of this cursor's children into a vec and return them.
pub fn collect_children(&self) -> Vec<Cursor> {
let mut children = vec![];
self.visit(|c| {
children.push(c);
CXChildVisit_Continue
});
children
}
/// Does this cursor have any children?
pub fn has_children(&self) -> bool {
let mut has_children = false;
self.visit(|_| {
has_children = true;
CXChildVisit_Break
});
has_children
}
/// Does this cursor have at least `n` children?
pub fn has_at_least_num_children(&self, n: usize) -> bool {
assert!(n > 0);
let mut num_left = n;
self.visit(|_| {
num_left -= 1;
if num_left == 0 {
CXChildVisit_Break
} else {
CXChildVisit_Continue
}
});
num_left == 0
}
/// Returns whether the given location contains a cursor with the given
/// kind in the first level of nesting underneath (doesn't look
/// recursively).
pub fn contains_cursor(&self, kind: CXCursorKind) -> bool {
let mut found = false;
self.visit(|c| {
if c.kind() == kind {
found = true;
CXChildVisit_Break
} else {
CXChildVisit_Continue
}
});
found
}
/// Is the referent an inlined function?
pub fn is_inlined_function(&self) -> bool {
unsafe { clang_Cursor_isFunctionInlined(self.x) != 0 }
}
/// Is the referent a defaulted function?
pub fn is_defaulted_function(&self) -> bool {
unsafe { clang_CXXMethod_isDefaulted(self.x) != 0 }
}
/// Is the referent a deleted function?
pub fn is_deleted_function(&self) -> bool {
// Unfortunately, libclang doesn't yet have an API for checking if a
// member function is deleted, but the following should be a good
// enough approximation.
// Deleted functions are implicitly inline according to paragraph 4 of
// [dcl.fct.def.delete] in the C++ standard. Normal inline functions
// have a definition in the same translation unit, so if this is an
// inline function without a definition, and it's not a defaulted
// function, we can reasonably safely conclude that it's a deleted
// function.
self.is_inlined_function() &&
self.definition().is_none() &&
!self.is_defaulted_function()
}
/// Is the referent a bit field declaration?
pub fn is_bit_field(&self) -> bool {
unsafe { clang_Cursor_isBitField(self.x) != 0 }
}
/// Get a cursor to the bit field's width expression, or `None` if it's not
/// a bit field.
pub fn bit_width_expr(&self) -> Option<Cursor> {
if !self.is_bit_field() {
return None;
}
let mut result = None;
self.visit(|cur| {
// The first child may or may not be a TypeRef, depending on whether
// the field's type is builtin. Skip it.
if cur.kind() == CXCursor_TypeRef {
return CXChildVisit_Continue;
}
// The next expression or literal is the bit width.
result = Some(cur);
CXChildVisit_Break
});
result
}
/// Get the width of this cursor's referent bit field, or `None` if the
/// referent is not a bit field or if the width could not be evaluated.
pub fn bit_width(&self) -> Option<u32> {
// It is not safe to check the bit width without ensuring it doesn't
// depend on a template parameter. See
// https://github.com/rust-lang/rust-bindgen/issues/2239
if self.bit_width_expr()?.is_dependent_on_template_parameter() {
return None;
}
unsafe {
let w = clang_getFieldDeclBitWidth(self.x);
if w == -1 {
None
} else {
Some(w as u32)
}
}
}
/// Get the integer representation type used to hold this cursor's referent
/// enum type.
pub fn enum_type(&self) -> Option<Type> {
unsafe {
let t = Type {
x: clang_getEnumDeclIntegerType(self.x),
};
if t.is_valid() {
Some(t)
} else {
None
}
}
}
/// Get the boolean constant value for this cursor's enum variant referent.
///
/// Returns None if the cursor's referent is not an enum variant.
pub fn enum_val_boolean(&self) -> Option<bool> {
unsafe {
if self.kind() == CXCursor_EnumConstantDecl {
Some(clang_getEnumConstantDeclValue(self.x) != 0)
} else {
None
}
}
}
/// Get the signed constant value for this cursor's enum variant referent.
///
/// Returns None if the cursor's referent is not an enum variant.
pub fn enum_val_signed(&self) -> Option<i64> {
unsafe {
if self.kind() == CXCursor_EnumConstantDecl {
#[allow(clippy::unnecessary_cast)]
Some(clang_getEnumConstantDeclValue(self.x) as i64)
} else {
None
}
}
}
/// Get the unsigned constant value for this cursor's enum variant referent.
///
/// Returns None if the cursor's referent is not an enum variant.
pub fn enum_val_unsigned(&self) -> Option<u64> {
unsafe {
if self.kind() == CXCursor_EnumConstantDecl {
#[allow(clippy::unnecessary_cast)]
Some(clang_getEnumConstantDeclUnsignedValue(self.x) as u64)
} else {
None
}
}
}
/// Does this cursor have the given attributes?
pub fn has_attrs<const N: usize>(
&self,
attrs: &[Attribute; N],
) -> [bool; N] {
let mut found_attrs = [false; N];
let mut found_count = 0;
self.visit(|cur| {
let kind = cur.kind();
for (idx, attr) in attrs.iter().enumerate() {
let found_attr = &mut found_attrs[idx];
if !*found_attr {
// `attr.name` and` attr.token_kind` are checked against unexposed attributes only.
if attr.kind.map_or(false, |k| k == kind) ||
(kind == CXCursor_UnexposedAttr &&
cur.tokens().iter().any(|t| {
t.kind == attr.token_kind &&
t.spelling() == attr.name
}))
{
*found_attr = true;
found_count += 1;
if found_count == N {
return CXChildVisit_Break;
}
}
}
}
CXChildVisit_Continue
});
found_attrs
}
/// Given that this cursor's referent is a `typedef`, get the `Type` that is
/// being aliased.
pub fn typedef_type(&self) -> Option<Type> {
let inner = Type {
x: unsafe { clang_getTypedefDeclUnderlyingType(self.x) },
};
if inner.is_valid() {
Some(inner)
} else {
None
}
}
/// Get the linkage kind for this cursor's referent.
///
/// This only applies to functions and variables.
pub fn linkage(&self) -> CXLinkageKind {
unsafe { clang_getCursorLinkage(self.x) }
}
/// Get the visibility of this cursor's referent.
pub fn visibility(&self) -> CXVisibilityKind {
unsafe { clang_getCursorVisibility(self.x) }
}
/// Given that this cursor's referent is a function, return cursors to its
/// parameters.
///
/// Returns None if the cursor's referent is not a function/method call or
/// declaration.
pub fn args(&self) -> Option<Vec<Cursor>> {
// match self.kind() {
// CXCursor_FunctionDecl |
// CXCursor_CXXMethod => {
self.num_args().ok().map(|num| {
(0..num)
.map(|i| Cursor {
x: unsafe { clang_Cursor_getArgument(self.x, i as c_uint) },
})
.collect()
})
}
/// Given that this cursor's referent is a function/method call or
/// declaration, return the number of arguments it takes.
///
/// Returns Err if the cursor's referent is not a function/method call or
/// declaration.
pub fn num_args(&self) -> Result<u32, ()> {
unsafe {
let w = clang_Cursor_getNumArguments(self.x);
if w == -1 {
Err(())
} else {
Ok(w as u32)
}
}
}
/// Get the access specifier for this cursor's referent.
pub fn access_specifier(&self) -> CX_CXXAccessSpecifier {
unsafe { clang_getCXXAccessSpecifier(self.x) }
}
/// Is the cursor's referrent publically accessible in C++?
///
/// Returns true if self.access_specifier() is `CX_CXXPublic` or
/// `CX_CXXInvalidAccessSpecifier`.
pub fn public_accessible(&self) -> bool {
let access = self.access_specifier();
access == CX_CXXPublic || access == CX_CXXInvalidAccessSpecifier
}
/// Is this cursor's referent a field declaration that is marked as
/// `mutable`?
pub fn is_mutable_field(&self) -> bool {
unsafe { clang_CXXField_isMutable(self.x) != 0 }
}
/// Get the offset of the field represented by the Cursor.
pub fn offset_of_field(&self) -> Result<usize, LayoutError> {
let offset = unsafe { clang_Cursor_getOffsetOfField(self.x) };
if offset < 0 {
Err(LayoutError::from(offset as i32))
} else {
Ok(offset as usize)
}
}
/// Is this cursor's referent a member function that is declared `static`?
pub fn method_is_static(&self) -> bool {
unsafe { clang_CXXMethod_isStatic(self.x) != 0 }
}
/// Is this cursor's referent a member function that is declared `const`?
pub fn method_is_const(&self) -> bool {
unsafe { clang_CXXMethod_isConst(self.x) != 0 }
}
/// Is this cursor's referent a member function that is virtual?
pub fn method_is_virtual(&self) -> bool {
unsafe { clang_CXXMethod_isVirtual(self.x) != 0 }
}
/// Is this cursor's referent a member function that is pure virtual?
pub fn method_is_pure_virtual(&self) -> bool {
unsafe { clang_CXXMethod_isPureVirtual(self.x) != 0 }
}
/// Is this cursor's referent a struct or class with virtual members?
pub fn is_virtual_base(&self) -> bool {
unsafe { clang_isVirtualBase(self.x) != 0 }
}
/// Try to evaluate this cursor.
pub fn evaluate(&self) -> Option<EvalResult> {
EvalResult::new(*self)
}
/// Return the result type for this cursor
pub fn ret_type(&self) -> Option<Type> {
let rt = Type {
x: unsafe { clang_getCursorResultType(self.x) },
};
if rt.is_valid() {
Some(rt)
} else {
None
}
}
/// Gets the tokens that correspond to that cursor.
pub fn tokens(&self) -> RawTokens {
RawTokens::new(self)
}
/// Gets the tokens that correspond to that cursor as `cexpr` tokens.
pub fn cexpr_tokens(self) -> Vec<cexpr::token::Token> {
self.tokens()
.iter()
.filter_map(|token| token.as_cexpr_token())
.collect()
}
/// Obtain the real path name of a cursor of InclusionDirective kind.
///
/// Returns None if the cursor does not include a file, otherwise the file's full name
pub fn get_included_file_name(&self) -> Option<String> {
let file = unsafe { clang_sys::clang_getIncludedFile(self.x) };
if file.is_null() {
None
} else {
Some(unsafe {
cxstring_into_string(clang_sys::clang_getFileName(file))
})
}
}
}
/// A struct that owns the tokenizer result from a given cursor.
pub struct RawTokens<'a> {
cursor: &'a Cursor,
tu: CXTranslationUnit,
tokens: *mut CXToken,
token_count: c_uint,
}
impl<'a> RawTokens<'a> {
fn new(cursor: &'a Cursor) -> Self {
let mut tokens = ptr::null_mut();
let mut token_count = 0;
let range = cursor.extent();
let tu = unsafe { clang_Cursor_getTranslationUnit(cursor.x) };
unsafe { clang_tokenize(tu, range, &mut tokens, &mut token_count) };
Self {
cursor,
tu,
tokens,
token_count,
}
}
fn as_slice(&self) -> &[CXToken] {
if self.tokens.is_null() {
return &[];
}
unsafe { slice::from_raw_parts(self.tokens, self.token_count as usize) }
}
/// Get an iterator over these tokens.
pub fn iter(&self) -> ClangTokenIterator {
ClangTokenIterator {
tu: self.tu,
raw: self.as_slice().iter(),
}
}
}
impl<'a> Drop for RawTokens<'a> {
fn drop(&mut self) {
if !self.tokens.is_null() {
unsafe {
clang_disposeTokens(
self.tu,
self.tokens,
self.token_count as c_uint,
);
}
}
}
}
/// A raw clang token, that exposes only kind, spelling, and extent. This is a
/// slightly more convenient version of `CXToken` which owns the spelling
/// string and extent.
#[derive(Debug)]
pub struct ClangToken {
spelling: CXString,
/// The extent of the token. This is the same as the relevant member from
/// `CXToken`.
pub extent: CXSourceRange,
/// The kind of the token. This is the same as the relevant member from
/// `CXToken`.
pub kind: CXTokenKind,
}
impl ClangToken {
/// Get the token spelling, without being converted to utf-8.
pub fn spelling(&self) -> &[u8] {
let c_str = unsafe {
CStr::from_ptr(clang_getCString(self.spelling) as *const _)
};
c_str.to_bytes()
}
/// Converts a ClangToken to a `cexpr` token if possible.
pub fn as_cexpr_token(&self) -> Option<cexpr::token::Token> {
use cexpr::token;
let kind = match self.kind {
CXToken_Punctuation => token::Kind::Punctuation,
CXToken_Literal => token::Kind::Literal,
CXToken_Identifier => token::Kind::Identifier,
CXToken_Keyword => token::Kind::Keyword,
// NB: cexpr is not too happy about comments inside
// expressions, so we strip them down here.
CXToken_Comment => return None,
_ => {
warn!("Found unexpected token kind: {:?}", self);
return None;
}
};
Some(token::Token {
kind,
raw: self.spelling().to_vec().into_boxed_slice(),
})
}
}
impl Drop for ClangToken {
fn drop(&mut self) {
unsafe { clang_disposeString(self.spelling) }
}
}
/// An iterator over a set of Tokens.
pub struct ClangTokenIterator<'a> {
tu: CXTranslationUnit,
raw: slice::Iter<'a, CXToken>,
}
impl<'a> Iterator for ClangTokenIterator<'a> {
type Item = ClangToken;
fn next(&mut self) -> Option<Self::Item> {
let raw = self.raw.next()?;
unsafe {
let kind = clang_getTokenKind(*raw);
let spelling = clang_getTokenSpelling(self.tu, *raw);
let extent = clang_getTokenExtent(self.tu, *raw);
Some(ClangToken {
kind,
extent,
spelling,
})
}
}
}
/// Checks whether the name looks like an identifier, i.e. is alphanumeric
/// (including '_') and does not start with a digit.
pub fn is_valid_identifier(name: &str) -> bool {
let mut chars = name.chars();
let first_valid = chars
.next()
.map(|c| c.is_alphabetic() || c == '_')
.unwrap_or(false);
first_valid && chars.all(|c| c.is_alphanumeric() || c == '_')
}
extern "C" fn visit_children<Visitor>(
cur: CXCursor,
_parent: CXCursor,
data: CXClientData,
) -> CXChildVisitResult
where
Visitor: FnMut(Cursor) -> CXChildVisitResult,
{
let func: &mut Visitor = unsafe { &mut *(data as *mut Visitor) };
let child = Cursor { x: cur };
(*func)(child)
}
impl PartialEq for Cursor {
fn eq(&self, other: &Cursor) -> bool {
unsafe { clang_equalCursors(self.x, other.x) == 1 }
}
}
impl Eq for Cursor {}
impl Hash for Cursor {
fn hash<H: Hasher>(&self, state: &mut H) {
unsafe { clang_hashCursor(self.x) }.hash(state)
}
}
/// The type of a node in clang's AST.
#[derive(Clone, Copy)]
pub struct Type {
x: CXType,
}
impl PartialEq for Type {
fn eq(&self, other: &Self) -> bool {
unsafe { clang_equalTypes(self.x, other.x) != 0 }
}
}
impl Eq for Type {}
impl fmt::Debug for Type {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(
fmt,
"Type({}, kind: {}, cconv: {}, decl: {:?}, canon: {:?})",
self.spelling(),
type_to_str(self.kind()),
self.call_conv(),
self.declaration(),
self.declaration().canonical()
)
}
}
/// An error about the layout of a struct, class, or type.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub enum LayoutError {
/// Asked for the layout of an invalid type.
Invalid,
/// Asked for the layout of an incomplete type.
Incomplete,
/// Asked for the layout of a dependent type.
Dependent,
/// Asked for the layout of a type that does not have constant size.
NotConstantSize,
/// Asked for the layout of a field in a type that does not have such a
/// field.
InvalidFieldName,
/// An unknown layout error.
Unknown,
}
impl ::std::convert::From<i32> for LayoutError {
fn from(val: i32) -> Self {
use self::LayoutError::*;
match val {
CXTypeLayoutError_Invalid => Invalid,
CXTypeLayoutError_Incomplete => Incomplete,
CXTypeLayoutError_Dependent => Dependent,
CXTypeLayoutError_NotConstantSize => NotConstantSize,
CXTypeLayoutError_InvalidFieldName => InvalidFieldName,
_ => Unknown,
}
}
}
impl Type {
/// Get this type's kind.
pub fn kind(&self) -> CXTypeKind {
self.x.kind
}
/// Get a cursor pointing to this type's declaration.
pub fn declaration(&self) -> Cursor {
unsafe {
Cursor {
x: clang_getTypeDeclaration(self.x),
}
}
}
/// Get the canonical declaration of this type, if it is available.
pub fn canonical_declaration(
&self,
location: Option<&Cursor>,
) -> Option<CanonicalTypeDeclaration> {
let mut declaration = self.declaration();
if !declaration.is_valid() {
if let Some(location) = location {
let mut location = *location;
if let Some(referenced) = location.referenced() {
location = referenced;
}
if location.is_template_like() {
declaration = location;
}
}
}
let canonical = declaration.canonical();
if canonical.is_valid() && canonical.kind() != CXCursor_NoDeclFound {
Some(CanonicalTypeDeclaration(*self, canonical))
} else {
None
}
}
/// Get a raw display name for this type.
pub fn spelling(&self) -> String {
let s = unsafe { cxstring_into_string(clang_getTypeSpelling(self.x)) };
// Clang 5.0 introduced changes in the spelling API so it returned the
// full qualified name. Let's undo that here.
if s.split("::").all(is_valid_identifier) {
if let Some(s) = s.split("::").last() {
return s.to_owned();
}
}
s
}
/// Is this type const qualified?
pub fn is_const(&self) -> bool {
unsafe { clang_isConstQualifiedType(self.x) != 0 }
}
#[inline]
fn is_non_deductible_auto_type(&self) -> bool {
debug_assert_eq!(self.kind(), CXType_Auto);
self.canonical_type() == *self
}
#[inline]
fn clang_size_of(&self, ctx: &BindgenContext) -> c_longlong {
match self.kind() {
// Work-around https://bugs.llvm.org/show_bug.cgi?id=40975
CXType_RValueReference | CXType_LValueReference => {
ctx.target_pointer_size() as c_longlong
}
// Work-around https://bugs.llvm.org/show_bug.cgi?id=40813
CXType_Auto if self.is_non_deductible_auto_type() => -6,
_ => unsafe { clang_Type_getSizeOf(self.x) },
}
}
#[inline]
fn clang_align_of(&self, ctx: &BindgenContext) -> c_longlong {
match self.kind() {
// Work-around https://bugs.llvm.org/show_bug.cgi?id=40975
CXType_RValueReference | CXType_LValueReference => {
ctx.target_pointer_size() as c_longlong
}
// Work-around https://bugs.llvm.org/show_bug.cgi?id=40813
CXType_Auto if self.is_non_deductible_auto_type() => -6,
_ => unsafe { clang_Type_getAlignOf(self.x) },
}
}
/// What is the size of this type? Paper over invalid types by returning `0`
/// for them.
pub fn size(&self, ctx: &BindgenContext) -> usize {
let val = self.clang_size_of(ctx);
if val < 0 {
0
} else {
val as usize
}
}
/// What is the size of this type?
pub fn fallible_size(
&self,
ctx: &BindgenContext,
) -> Result<usize, LayoutError> {
let val = self.clang_size_of(ctx);
if val < 0 {
Err(LayoutError::from(val as i32))
} else {
Ok(val as usize)
}
}
/// What is the alignment of this type? Paper over invalid types by
/// returning `0`.
pub fn align(&self, ctx: &BindgenContext) -> usize {
let val = self.clang_align_of(ctx);
if val < 0 {
0
} else {
val as usize
}
}
/// What is the alignment of this type?
pub fn fallible_align(
&self,
ctx: &BindgenContext,
) -> Result<usize, LayoutError> {
let val = self.clang_align_of(ctx);
if val < 0 {
Err(LayoutError::from(val as i32))
} else {
Ok(val as usize)
}
}
/// Get the layout for this type, or an error describing why it does not
/// have a valid layout.
pub fn fallible_layout(
&self,
ctx: &BindgenContext,
) -> Result<crate::ir::layout::Layout, LayoutError> {
use crate::ir::layout::Layout;
let size = self.fallible_size(ctx)?;
let align = self.fallible_align(ctx)?;
Ok(Layout::new(size, align))
}
/// Get the number of template arguments this type has, or `None` if it is
/// not some kind of template.
pub fn num_template_args(&self) -> Option<u32> {
let n = unsafe { clang_Type_getNumTemplateArguments(self.x) };
if n >= 0 {
Some(n as u32)
} else {
debug_assert_eq!(n, -1);
None
}
}
/// If this type is a class template specialization, return its
/// template arguments. Otherwise, return None.
pub fn template_args(&self) -> Option<TypeTemplateArgIterator> {
self.num_template_args().map(|n| TypeTemplateArgIterator {
x: self.x,
length: n,
index: 0,
})
}
/// Given that this type is a function prototype, return the types of its parameters.
///
/// Returns None if the type is not a function prototype.
pub fn args(&self) -> Option<Vec<Type>> {
self.num_args().ok().map(|num| {
(0..num)
.map(|i| Type {
x: unsafe { clang_getArgType(self.x, i as c_uint) },
})
.collect()
})
}
/// Given that this type is a function prototype, return the number of arguments it takes.
///
/// Returns Err if the type is not a function prototype.
pub fn num_args(&self) -> Result<u32, ()> {
unsafe {
let w = clang_getNumArgTypes(self.x);
if w == -1 {
Err(())
} else {
Ok(w as u32)
}
}
}
/// Given that this type is a pointer type, return the type that it points
/// to.
pub fn pointee_type(&self) -> Option<Type> {
match self.kind() {
CXType_Pointer |
CXType_RValueReference |
CXType_LValueReference |
CXType_MemberPointer |
CXType_BlockPointer |
CXType_ObjCObjectPointer => {
let ret = Type {
x: unsafe { clang_getPointeeType(self.x) },
};
debug_assert!(ret.is_valid());
Some(ret)
}
_ => None,
}
}
/// Given that this type is an array, vector, or complex type, return the
/// type of its elements.
pub fn elem_type(&self) -> Option<Type> {
let current_type = Type {
x: unsafe { clang_getElementType(self.x) },
};
if current_type.is_valid() {
Some(current_type)
} else {
None
}
}
/// Given that this type is an array or vector type, return its number of
/// elements.
pub fn num_elements(&self) -> Option<usize> {
let num_elements_returned = unsafe { clang_getNumElements(self.x) };
if num_elements_returned != -1 {
Some(num_elements_returned as usize)
} else {
None
}
}
/// Get the canonical version of this type. This sees through `typedef`s and
/// aliases to get the underlying, canonical type.
pub fn canonical_type(&self) -> Type {
unsafe {
Type {
x: clang_getCanonicalType(self.x),
}
}
}
/// Is this type a variadic function type?
pub fn is_variadic(&self) -> bool {
unsafe { clang_isFunctionTypeVariadic(self.x) != 0 }
}
/// Given that this type is a function type, get the type of its return
/// value.
pub fn ret_type(&self) -> Option<Type> {
let rt = Type {
x: unsafe { clang_getResultType(self.x) },
};
if rt.is_valid() {
Some(rt)
} else {
None
}
}
/// Given that this type is a function type, get its calling convention. If
/// this is not a function type, `CXCallingConv_Invalid` is returned.
pub fn call_conv(&self) -> CXCallingConv {
unsafe { clang_getFunctionTypeCallingConv(self.x) }
}
/// For elaborated types (types which use `class`, `struct`, or `union` to
/// disambiguate types from local bindings), get the underlying type.
pub fn named(&self) -> Type {
unsafe {
Type {
x: clang_Type_getNamedType(self.x),
}
}
}
/// Is this a valid type?
pub fn is_valid(&self) -> bool {
self.kind() != CXType_Invalid
}
/// Is this a valid and exposed type?
pub fn is_valid_and_exposed(&self) -> bool {
self.is_valid() && self.kind() != CXType_Unexposed
}
/// Is this type a fully instantiated template?
pub fn is_fully_instantiated_template(&self) -> bool {
// Yep, the spelling of this containing type-parameter is extremely
// nasty... But can happen in <type_traits>. Unfortunately I couldn't
// reduce it enough :(
self.template_args().map_or(false, |args| args.len() > 0) &&
!matches!(
self.declaration().kind(),
CXCursor_ClassTemplatePartialSpecialization |
CXCursor_TypeAliasTemplateDecl |
CXCursor_TemplateTemplateParameter
)
}
/// Is this type an associated template type? Eg `T::Associated` in
/// this example:
///
/// ```c++
/// template <typename T>
/// class Foo {
/// typename T::Associated member;
/// };
/// ```
pub fn is_associated_type(&self) -> bool {
// This is terrible :(
fn hacky_parse_associated_type<S: AsRef<str>>(spelling: S) -> bool {
lazy_static! {
static ref ASSOC_TYPE_RE: regex::Regex = regex::Regex::new(
r"typename type\-parameter\-\d+\-\d+::.+"
)
.unwrap();
}
ASSOC_TYPE_RE.is_match(spelling.as_ref())
}
self.kind() == CXType_Unexposed &&
(hacky_parse_associated_type(self.spelling()) ||
hacky_parse_associated_type(
self.canonical_type().spelling(),
))
}
}
/// The `CanonicalTypeDeclaration` type exists as proof-by-construction that its
/// cursor is the canonical declaration for its type. If you have a
/// `CanonicalTypeDeclaration` instance, you know for sure that the type and
/// cursor match up in a canonical declaration relationship, and it simply
/// cannot be otherwise.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct CanonicalTypeDeclaration(Type, Cursor);
impl CanonicalTypeDeclaration {
/// Get the type.
pub fn ty(&self) -> &Type {
&self.0
}
/// Get the type's canonical declaration cursor.
pub fn cursor(&self) -> &Cursor {
&self.1
}
}
/// An iterator for a type's template arguments.
pub struct TypeTemplateArgIterator {
x: CXType,
length: u32,
index: u32,
}
impl Iterator for TypeTemplateArgIterator {
type Item = Type;
fn next(&mut self) -> Option<Type> {
if self.index < self.length {
let idx = self.index as c_uint;
self.index += 1;
Some(Type {
x: unsafe { clang_Type_getTemplateArgumentAsType(self.x, idx) },
})
} else {
None
}
}
}
impl ExactSizeIterator for TypeTemplateArgIterator {
fn len(&self) -> usize {
assert!(self.index <= self.length);
(self.length - self.index) as usize
}
}
/// A `SourceLocation` is a file, line, column, and byte offset location for
/// some source text.
pub struct SourceLocation {
x: CXSourceLocation,
}
impl SourceLocation {
/// Get the (file, line, column, byte offset) tuple for this source
/// location.
pub fn location(&self) -> (File, usize, usize, usize) {
unsafe {
let mut file = mem::zeroed();
let mut line = 0;
let mut col = 0;
let mut off = 0;
clang_getSpellingLocation(
self.x, &mut file, &mut line, &mut col, &mut off,
);
(File { x: file }, line as usize, col as usize, off as usize)
}
}
}
impl fmt::Display for SourceLocation {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let (file, line, col, _) = self.location();
if let Some(name) = file.name() {
write!(f, "{}:{}:{}", name, line, col)
} else {
"builtin definitions".fmt(f)
}
}
}
impl fmt::Debug for SourceLocation {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self)
}
}
/// A comment in the source text.
///
/// Comments are sort of parsed by Clang, and have a tree structure.
pub struct Comment {
x: CXComment,
}
impl Comment {
/// What kind of comment is this?
pub fn kind(&self) -> CXCommentKind {
unsafe { clang_Comment_getKind(self.x) }
}
/// Get this comment's children comment
pub fn get_children(&self) -> CommentChildrenIterator {
CommentChildrenIterator {
parent: self.x,
length: unsafe { clang_Comment_getNumChildren(self.x) },
index: 0,
}
}
/// Given that this comment is the start or end of an HTML tag, get its tag
/// name.
pub fn get_tag_name(&self) -> String {
unsafe { cxstring_into_string(clang_HTMLTagComment_getTagName(self.x)) }
}
/// Given that this comment is an HTML start tag, get its attributes.
pub fn get_tag_attrs(&self) -> CommentAttributesIterator {
CommentAttributesIterator {
x: self.x,
length: unsafe { clang_HTMLStartTag_getNumAttrs(self.x) },
index: 0,
}
}
}
/// An iterator for a comment's children
pub struct CommentChildrenIterator {
parent: CXComment,
length: c_uint,
index: c_uint,
}
impl Iterator for CommentChildrenIterator {
type Item = Comment;
fn next(&mut self) -> Option<Comment> {
if self.index < self.length {
let idx = self.index;
self.index += 1;
Some(Comment {
x: unsafe { clang_Comment_getChild(self.parent, idx) },
})
} else {
None
}
}
}
/// An HTML start tag comment attribute
pub struct CommentAttribute {
/// HTML start tag attribute name
pub name: String,
/// HTML start tag attribute value
pub value: String,
}
/// An iterator for a comment's attributes
pub struct CommentAttributesIterator {
x: CXComment,
length: c_uint,
index: c_uint,
}
impl Iterator for CommentAttributesIterator {
type Item = CommentAttribute;
fn next(&mut self) -> Option<CommentAttribute> {
if self.index < self.length {
let idx = self.index;
self.index += 1;
Some(CommentAttribute {
name: unsafe {
cxstring_into_string(clang_HTMLStartTag_getAttrName(
self.x, idx,
))
},
value: unsafe {
cxstring_into_string(clang_HTMLStartTag_getAttrValue(
self.x, idx,
))
},
})
} else {
None
}
}
}
/// A source file.
pub struct File {
x: CXFile,
}
impl File {
/// Get the name of this source file.
pub fn name(&self) -> Option<String> {
if self.x.is_null() {
return None;
}
Some(unsafe { cxstring_into_string(clang_getFileName(self.x)) })
}
}
fn cxstring_to_string_leaky(s: CXString) -> String {
if s.data.is_null() {
return "".to_owned();
}
let c_str = unsafe { CStr::from_ptr(clang_getCString(s) as *const _) };
c_str.to_string_lossy().into_owned()
}
fn cxstring_into_string(s: CXString) -> String {
let ret = cxstring_to_string_leaky(s);
unsafe { clang_disposeString(s) };
ret
}
/// An `Index` is an environment for a set of translation units that will
/// typically end up linked together in one final binary.
pub struct Index {
x: CXIndex,
}
impl Index {
/// Construct a new `Index`.
///
/// The `pch` parameter controls whether declarations in pre-compiled
/// headers are included when enumerating a translation unit's "locals".
///
/// The `diag` parameter controls whether debugging diagnostics are enabled.
pub fn new(pch: bool, diag: bool) -> Index {
unsafe {
Index {
x: clang_createIndex(pch as c_int, diag as c_int),
}
}
}
}
impl fmt::Debug for Index {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "Index {{ }}")
}
}
impl Drop for Index {
fn drop(&mut self) {
unsafe {
clang_disposeIndex(self.x);
}
}
}
/// A translation unit (or "compilation unit").
pub struct TranslationUnit {
x: CXTranslationUnit,
}
impl fmt::Debug for TranslationUnit {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "TranslationUnit {{ }}")
}
}
impl TranslationUnit {
/// Parse a source file into a translation unit.
pub fn parse(
ix: &Index,
file: &str,
cmd_args: &[String],
unsaved: &[UnsavedFile],
opts: CXTranslationUnit_Flags,
) -> Option<TranslationUnit> {
let fname = CString::new(file).unwrap();
let _c_args: Vec<CString> = cmd_args
.iter()
.map(|s| CString::new(s.clone()).unwrap())
.collect();
let c_args: Vec<*const c_char> =
_c_args.iter().map(|s| s.as_ptr()).collect();
let mut c_unsaved: Vec<CXUnsavedFile> =
unsaved.iter().map(|f| f.x).collect();
let tu = unsafe {
clang_parseTranslationUnit(
ix.x,
fname.as_ptr(),
c_args.as_ptr(),
c_args.len() as c_int,
c_unsaved.as_mut_ptr(),
c_unsaved.len() as c_uint,
opts,
)
};
if tu.is_null() {
None
} else {
Some(TranslationUnit { x: tu })
}
}
/// Get the Clang diagnostic information associated with this translation
/// unit.
pub fn diags(&self) -> Vec<Diagnostic> {
unsafe {
let num = clang_getNumDiagnostics(self.x) as usize;
let mut diags = vec![];
for i in 0..num {
diags.push(Diagnostic {
x: clang_getDiagnostic(self.x, i as c_uint),
});
}
diags
}
}
/// Get a cursor pointing to the root of this translation unit's AST.
pub fn cursor(&self) -> Cursor {
unsafe {
Cursor {
x: clang_getTranslationUnitCursor(self.x),
}
}
}
/// Is this the null translation unit?
pub fn is_null(&self) -> bool {
self.x.is_null()
}
}
impl Drop for TranslationUnit {
fn drop(&mut self) {
unsafe {
clang_disposeTranslationUnit(self.x);
}
}
}
/// A diagnostic message generated while parsing a translation unit.
pub struct Diagnostic {
x: CXDiagnostic,
}
impl Diagnostic {
/// Format this diagnostic message as a string, using the given option bit
/// flags.
pub fn format(&self) -> String {
unsafe {
let opts = clang_defaultDiagnosticDisplayOptions();
cxstring_into_string(clang_formatDiagnostic(self.x, opts))
}
}
/// What is the severity of this diagnostic message?
pub fn severity(&self) -> CXDiagnosticSeverity {
unsafe { clang_getDiagnosticSeverity(self.x) }
}
}
impl Drop for Diagnostic {
/// Destroy this diagnostic message.
fn drop(&mut self) {
unsafe {
clang_disposeDiagnostic(self.x);
}
}
}
/// A file which has not been saved to disk.
pub struct UnsavedFile {
x: CXUnsavedFile,
/// The name of the unsaved file. Kept here to avoid leaving dangling pointers in
/// `CXUnsavedFile`.
pub name: CString,
contents: CString,
}
impl UnsavedFile {
/// Construct a new unsaved file with the given `name` and `contents`.
pub fn new(name: String, contents: String) -> UnsavedFile {
let name = CString::new(name).unwrap();
let contents = CString::new(contents).unwrap();
let x = CXUnsavedFile {
Filename: name.as_ptr(),
Contents: contents.as_ptr(),
Length: contents.as_bytes().len() as c_ulong,
};
UnsavedFile { x, name, contents }
}
}
impl fmt::Debug for UnsavedFile {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(
fmt,
"UnsavedFile(name: {:?}, contents: {:?})",
self.name, self.contents
)
}
}
/// Convert a cursor kind into a static string.
pub fn kind_to_str(x: CXCursorKind) -> String {
unsafe { cxstring_into_string(clang_getCursorKindSpelling(x)) }
}
/// Convert a type kind to a static string.
pub fn type_to_str(x: CXTypeKind) -> String {
unsafe { cxstring_into_string(clang_getTypeKindSpelling(x)) }
}
/// Dump the Clang AST to stdout for debugging purposes.
pub fn ast_dump(c: &Cursor, depth: isize) -> CXChildVisitResult {
fn print_indent<S: AsRef<str>>(depth: isize, s: S) {
for _ in 0..depth {
print!(" ");
}
println!("{}", s.as_ref());
}
fn print_cursor<S: AsRef<str>>(depth: isize, prefix: S, c: &Cursor) {
let prefix = prefix.as_ref();
print_indent(
depth,
format!(" {}kind = {}", prefix, kind_to_str(c.kind())),
);
print_indent(
depth,
format!(" {}spelling = \"{}\"", prefix, c.spelling()),
);
print_indent(depth, format!(" {}location = {}", prefix, c.location()));
print_indent(
depth,
format!(" {}is-definition? {}", prefix, c.is_definition()),
);
print_indent(
depth,
format!(" {}is-declaration? {}", prefix, c.is_declaration()),
);
print_indent(
depth,
format!(
" {}is-inlined-function? {}",
prefix,
c.is_inlined_function()
),
);
let templ_kind = c.template_kind();
if templ_kind != CXCursor_NoDeclFound {
print_indent(
depth,
format!(
" {}template-kind = {}",
prefix,
kind_to_str(templ_kind)
),
);
}
if let Some(usr) = c.usr() {
print_indent(depth, format!(" {}usr = \"{}\"", prefix, usr));
}
if let Ok(num) = c.num_args() {
print_indent(depth, format!(" {}number-of-args = {}", prefix, num));
}
if let Some(num) = c.num_template_args() {
print_indent(
depth,
format!(" {}number-of-template-args = {}", prefix, num),
);
}
if c.is_bit_field() {
let width = match c.bit_width() {
Some(w) => w.to_string(),
None => "<unevaluable>".to_string(),
};
print_indent(depth, format!(" {}bit-width = {}", prefix, width));
}
if let Some(ty) = c.enum_type() {
print_indent(
depth,
format!(" {}enum-type = {}", prefix, type_to_str(ty.kind())),
);
}
if let Some(val) = c.enum_val_signed() {
print_indent(depth, format!(" {}enum-val = {}", prefix, val));
}
if let Some(ty) = c.typedef_type() {
print_indent(
depth,
format!(" {}typedef-type = {}", prefix, type_to_str(ty.kind())),
);
}
if let Some(ty) = c.ret_type() {
print_indent(
depth,
format!(" {}ret-type = {}", prefix, type_to_str(ty.kind())),
);
}
if let Some(refd) = c.referenced() {
if refd != *c {
println!();
print_cursor(
depth,
String::from(prefix) + "referenced.",
&refd,
);
}
}
let canonical = c.canonical();
if canonical != *c {
println!();
print_cursor(
depth,
String::from(prefix) + "canonical.",
&canonical,
);
}
if let Some(specialized) = c.specialized() {
if specialized != *c {
println!();
print_cursor(
depth,
String::from(prefix) + "specialized.",
&specialized,
);
}
}
if let Some(parent) = c.fallible_semantic_parent() {
println!();
print_cursor(
depth,
String::from(prefix) + "semantic-parent.",
&parent,
);
}
}
fn print_type<S: AsRef<str>>(depth: isize, prefix: S, ty: &Type) {
let prefix = prefix.as_ref();
let kind = ty.kind();
print_indent(depth, format!(" {}kind = {}", prefix, type_to_str(kind)));
if kind == CXType_Invalid {
return;
}
print_indent(depth, format!(" {}cconv = {}", prefix, ty.call_conv()));
print_indent(
depth,
format!(" {}spelling = \"{}\"", prefix, ty.spelling()),
);
let num_template_args =
unsafe { clang_Type_getNumTemplateArguments(ty.x) };
if num_template_args >= 0 {
print_indent(
depth,
format!(
" {}number-of-template-args = {}",
prefix, num_template_args
),
);
}
if let Some(num) = ty.num_elements() {
print_indent(
depth,
format!(" {}number-of-elements = {}", prefix, num),
);
}
print_indent(
depth,
format!(" {}is-variadic? {}", prefix, ty.is_variadic()),
);
let canonical = ty.canonical_type();
if canonical != *ty {
println!();
print_type(depth, String::from(prefix) + "canonical.", &canonical);
}
if let Some(pointee) = ty.pointee_type() {
if pointee != *ty {
println!();
print_type(depth, String::from(prefix) + "pointee.", &pointee);
}
}
if let Some(elem) = ty.elem_type() {
if elem != *ty {
println!();
print_type(depth, String::from(prefix) + "elements.", &elem);
}
}
if let Some(ret) = ty.ret_type() {
if ret != *ty {
println!();
print_type(depth, String::from(prefix) + "return.", &ret);
}
}
let named = ty.named();
if named != *ty && named.is_valid() {
println!();
print_type(depth, String::from(prefix) + "named.", &named);
}
}
print_indent(depth, "(");
print_cursor(depth, "", c);
println!();
let ty = c.cur_type();
print_type(depth, "type.", &ty);
let declaration = ty.declaration();
if declaration != *c && declaration.kind() != CXCursor_NoDeclFound {
println!();
print_cursor(depth, "type.declaration.", &declaration);
}
// Recurse.
let mut found_children = false;
c.visit(|s| {
if !found_children {
println!();
found_children = true;
}
ast_dump(&s, depth + 1)
});
print_indent(depth, ")");
CXChildVisit_Continue
}
/// Try to extract the clang version to a string
pub fn extract_clang_version() -> String {
unsafe { cxstring_into_string(clang_getClangVersion()) }
}
/// A wrapper for the result of evaluating an expression.
#[derive(Debug)]
pub struct EvalResult {
x: CXEvalResult,
}
impl EvalResult {
/// Evaluate `cursor` and return the result.
pub fn new(cursor: Cursor) -> Option<Self> {
// Work around https://bugs.llvm.org/show_bug.cgi?id=42532, see:
// * https://github.com/rust-lang/rust-bindgen/issues/283
// * https://github.com/rust-lang/rust-bindgen/issues/1590
{
let mut found_cant_eval = false;
cursor.visit(|c| {
if c.kind() == CXCursor_TypeRef &&
c.cur_type().canonical_type().kind() == CXType_Unexposed
{
found_cant_eval = true;
return CXChildVisit_Break;
}
CXChildVisit_Recurse
});
if found_cant_eval {
return None;
}
}
Some(EvalResult {
x: unsafe { clang_Cursor_Evaluate(cursor.x) },
})
}
fn kind(&self) -> CXEvalResultKind {
unsafe { clang_EvalResult_getKind(self.x) }
}
/// Try to get back the result as a double.
pub fn as_double(&self) -> Option<f64> {
match self.kind() {
CXEval_Float => {
Some(unsafe { clang_EvalResult_getAsDouble(self.x) })
}
_ => None,
}
}
/// Try to get back the result as an integer.
pub fn as_int(&self) -> Option<i64> {
if self.kind() != CXEval_Int {
return None;
}
if unsafe { clang_EvalResult_isUnsignedInt(self.x) } != 0 {
let value = unsafe { clang_EvalResult_getAsUnsigned(self.x) };
if value > i64::max_value() as c_ulonglong {
return None;
}
return Some(value as i64);
}
let value = unsafe { clang_EvalResult_getAsLongLong(self.x) };
if value > i64::max_value() as c_longlong {
return None;
}
if value < i64::min_value() as c_longlong {
return None;
}
#[allow(clippy::unnecessary_cast)]
Some(value as i64)
}
/// Evaluates the expression as a literal string, that may or may not be
/// valid utf-8.
pub fn as_literal_string(&self) -> Option<Vec<u8>> {
match self.kind() {
CXEval_StrLiteral => {
let ret = unsafe {
CStr::from_ptr(clang_EvalResult_getAsStr(self.x))
};
Some(ret.to_bytes().to_vec())
}
_ => None,
}
}
}
impl Drop for EvalResult {
fn drop(&mut self) {
unsafe { clang_EvalResult_dispose(self.x) };
}
}
/// Target information obtained from libclang.
#[derive(Debug)]
pub struct TargetInfo {
/// The target triple.
pub triple: String,
/// The width of the pointer _in bits_.
pub pointer_width: usize,
}
impl TargetInfo {
/// Tries to obtain target information from libclang.
pub fn new(tu: &TranslationUnit) -> Self {
let triple;
let pointer_width;
unsafe {
let ti = clang_getTranslationUnitTargetInfo(tu.x);
triple = cxstring_into_string(clang_TargetInfo_getTriple(ti));
pointer_width = clang_TargetInfo_getPointerWidth(ti);
clang_TargetInfo_dispose(ti);
}
assert!(pointer_width > 0);
assert_eq!(pointer_width % 8, 0);
TargetInfo {
triple,
pointer_width: pointer_width as usize,
}
}
}