enumflags2/lib.rs
1//! # Enum Flags
2//! `enumflags2` implements the classic bitflags datastructure. Annotate an enum
3//! with `#[bitflags]`, and `BitFlags<YourEnum>` will be able to hold arbitrary combinations
4//! of your enum within the space of a single integer.
5//!
6//! Unlike other crates, `enumflags2` makes the type-level distinction between
7//! a single flag (`YourEnum`) and a set of flags (`BitFlags<YourEnum>`).
8//! This allows idiomatic handling of bitflags, such as with `match` and `iter`.
9//!
10//! ## Example
11//! ```
12//! use enumflags2::{bitflags, make_bitflags, BitFlags};
13//!
14//! #[bitflags]
15//! #[repr(u8)]
16//! #[derive(Copy, Clone, Debug, PartialEq)]
17//! enum Test {
18//! A = 0b0001,
19//! B = 0b0010,
20//! C, // unspecified variants pick unused bits automatically
21//! D = 0b1000,
22//! }
23//!
24//! // Flags can be combined with |, this creates a BitFlags of your type:
25//! let a_b: BitFlags<Test> = Test::A | Test::B;
26//! let a_c = Test::A | Test::C;
27//! let b_c_d = make_bitflags!(Test::{B | C | D});
28//!
29//! // The debug output lets you inspect both the numeric value and
30//! // the actual flags:
31//! assert_eq!(format!("{:?}", a_b), "BitFlags<Test>(0b11, A | B)");
32//!
33//! // But if you'd rather see only one of those, that's available too:
34//! assert_eq!(format!("{}", a_b), "A | B");
35//! assert_eq!(format!("{:04b}", a_b), "0011");
36//!
37//! // Iterate over the flags like a normal set
38//! assert_eq!(a_b.iter().collect::<Vec<_>>(), &[Test::A, Test::B]);
39//!
40//! // Query the contents with contains and intersects
41//! assert!(a_b.contains(Test::A));
42//! assert!(b_c_d.contains(Test::B | Test::C));
43//! assert!(!(b_c_d.contains(a_b)));
44//!
45//! assert!(a_b.intersects(a_c));
46//! assert!(!(a_b.intersects(Test::C | Test::D)));
47//! ```
48//!
49//! ## Optional Feature Flags
50//!
51//! - [`serde`](https://serde.rs/) implements `Serialize` and `Deserialize`
52//! for `BitFlags<T>`.
53//! - `std` implements `std::error::Error` for `FromBitsError`.
54//!
55//! ## `const fn`-compatible APIs
56//!
57//! **Background:** The subset of `const fn` features currently stabilized is pretty limited.
58//! Most notably, [const traits are still at the RFC stage][const-trait-rfc],
59//! which makes it impossible to use any overloaded operators in a const
60//! context.
61//!
62//! **Naming convention:** If a separate, more limited function is provided
63//! for usage in a `const fn`, the name is suffixed with `_c`.
64//!
65//! Apart from functions whose name ends with `_c`, the [`make_bitflags!`] macro
66//! is often useful for many `const` and `const fn` usecases.
67//!
68//! **Blanket implementations:** If you attempt to write a `const fn` ranging
69//! over `T: BitFlag`, you will be met with an error explaining that currently,
70//! the only allowed trait bound for a `const fn` is `?Sized`. You will probably
71//! want to write a separate implementation for `BitFlags<T, u8>`,
72//! `BitFlags<T, u16>`, etc — best accomplished by a simple macro.
73//!
74//! **Documentation considerations:** The strategy described above is often used
75//! by `enumflags2` itself. To avoid clutter in the auto-generated documentation,
76//! the implementations for widths other than `u8` are marked with `#[doc(hidden)]`.
77//!
78//! ## Customizing `Default`
79//!
80//! By default, creating an instance of `BitFlags<T>` with `Default` will result in an empty
81//! set. If that's undesirable, you may customize this:
82//!
83//! ```
84//! # use enumflags2::{BitFlags, bitflags};
85//! #[bitflags(default = B | C)]
86//! #[repr(u8)]
87//! #[derive(Copy, Clone, Debug, PartialEq)]
88//! enum Test {
89//! A = 0b0001,
90//! B = 0b0010,
91//! C = 0b0100,
92//! D = 0b1000,
93//! }
94//!
95//! assert_eq!(BitFlags::default(), Test::B | Test::C);
96//! ```
97//!
98//! [const-trait-rfc]: https://github.com/rust-lang/rfcs/pull/2632
99#![warn(missing_docs)]
100#![cfg_attr(all(not(test), not(feature = "std")), no_std)]
101
102use core::hash::{Hash, Hasher};
103use core::marker::PhantomData;
104use core::{cmp, ops};
105
106#[allow(unused_imports)]
107#[macro_use]
108extern crate enumflags2_derive;
109
110#[doc(hidden)]
111pub use enumflags2_derive::bitflags_internal as bitflags;
112
113// Internal macro: expand into a separate copy for each supported numeric type.
114macro_rules! for_each_uint {
115 ( $d:tt $tyvar:ident $dd:tt $docattr:ident => $($input:tt)* ) => {
116 macro_rules! implement {
117 ( $d $tyvar:ty => $d($d $docattr:meta)? ) => {
118 $($input)*
119 }
120 }
121
122 implement! { u8 => }
123 implement! { u16 => doc(hidden) }
124 implement! { u32 => doc(hidden) }
125 implement! { u64 => doc(hidden) }
126 implement! { u128 => doc(hidden) }
127 }
128}
129
130/// A trait automatically implemented by `#[bitflags]` to make the enum
131/// a valid type parameter for `BitFlags<T>`.
132pub trait BitFlag: Copy + Clone + 'static + _internal::RawBitFlags {
133 /// Create a `BitFlags` with no flags set (in other words, with a value of 0).
134 ///
135 /// This is a convenience reexport of [`BitFlags::empty`]. It can be called with
136 /// `MyFlag::empty()`, thus bypassing the need for type hints in some situations.
137 ///
138 /// ```
139 /// # use enumflags2::{bitflags, BitFlags};
140 /// #[bitflags]
141 /// #[repr(u8)]
142 /// #[derive(Clone, Copy, PartialEq, Eq)]
143 /// enum MyFlag {
144 /// One = 1 << 0,
145 /// Two = 1 << 1,
146 /// Three = 1 << 2,
147 /// }
148 ///
149 /// use enumflags2::BitFlag;
150 ///
151 /// let empty = MyFlag::empty();
152 /// assert!(empty.is_empty());
153 /// assert_eq!(empty.contains(MyFlag::One), false);
154 /// assert_eq!(empty.contains(MyFlag::Two), false);
155 /// assert_eq!(empty.contains(MyFlag::Three), false);
156 /// ```
157 #[inline]
158 fn empty() -> BitFlags<Self> {
159 BitFlags::empty()
160 }
161
162 /// Create a `BitFlags` with all flags set.
163 ///
164 /// This is a convenience reexport of [`BitFlags::all`]. It can be called with
165 /// `MyFlag::all()`, thus bypassing the need for type hints in some situations.
166 ///
167 /// ```
168 /// # use enumflags2::{bitflags, BitFlags};
169 /// #[bitflags]
170 /// #[repr(u8)]
171 /// #[derive(Clone, Copy, PartialEq, Eq)]
172 /// enum MyFlag {
173 /// One = 1 << 0,
174 /// Two = 1 << 1,
175 /// Three = 1 << 2,
176 /// }
177 ///
178 /// use enumflags2::BitFlag;
179 ///
180 /// let all = MyFlag::all();
181 /// assert!(all.is_all());
182 /// assert_eq!(all.contains(MyFlag::One), true);
183 /// assert_eq!(all.contains(MyFlag::Two), true);
184 /// assert_eq!(all.contains(MyFlag::Three), true);
185 /// ```
186 #[inline]
187 fn all() -> BitFlags<Self> {
188 BitFlags::all()
189 }
190
191 /// Create a `BitFlags` if the raw value provided does not contain
192 /// any illegal flags.
193 ///
194 /// This is a convenience reexport of [`BitFlags::from_bits`]. It can be called
195 /// with `MyFlag::from_bits(bits)`, thus bypassing the need for type hints in
196 /// some situations.
197 ///
198 /// ```
199 /// # use enumflags2::{bitflags, BitFlags};
200 /// #[bitflags]
201 /// #[repr(u8)]
202 /// #[derive(Clone, Copy, PartialEq, Eq, Debug)]
203 /// enum MyFlag {
204 /// One = 1 << 0,
205 /// Two = 1 << 1,
206 /// Three = 1 << 2,
207 /// }
208 ///
209 /// use enumflags2::BitFlag;
210 ///
211 /// let flags = MyFlag::from_bits(0b11).unwrap();
212 /// assert_eq!(flags.contains(MyFlag::One), true);
213 /// assert_eq!(flags.contains(MyFlag::Two), true);
214 /// assert_eq!(flags.contains(MyFlag::Three), false);
215 /// let invalid = MyFlag::from_bits(1 << 3);
216 /// assert!(invalid.is_err());
217 /// ```
218 #[inline]
219 fn from_bits(bits: Self::Numeric) -> Result<BitFlags<Self>, FromBitsError<Self>> {
220 BitFlags::from_bits(bits)
221 }
222
223 /// Create a `BitFlags` from an underlying bitwise value. If any
224 /// invalid bits are set, ignore them.
225 ///
226 /// This is a convenience reexport of [`BitFlags::from_bits_truncate`]. It can be
227 /// called with `MyFlag::from_bits_truncate(bits)`, thus bypassing the need for
228 /// type hints in some situations.
229 ///
230 /// ```
231 /// # use enumflags2::{bitflags, BitFlags};
232 /// #[bitflags]
233 /// #[repr(u8)]
234 /// #[derive(Clone, Copy, PartialEq, Eq)]
235 /// enum MyFlag {
236 /// One = 1 << 0,
237 /// Two = 1 << 1,
238 /// Three = 1 << 2,
239 /// }
240 ///
241 /// use enumflags2::BitFlag;
242 ///
243 /// let flags = MyFlag::from_bits_truncate(0b1_1011);
244 /// assert_eq!(flags.contains(MyFlag::One), true);
245 /// assert_eq!(flags.contains(MyFlag::Two), true);
246 /// assert_eq!(flags.contains(MyFlag::Three), false);
247 /// ```
248 #[inline]
249 fn from_bits_truncate(bits: Self::Numeric) -> BitFlags<Self> {
250 BitFlags::from_bits_truncate(bits)
251 }
252
253 /// Create a `BitFlags` unsafely, without checking if the bits form
254 /// a valid bit pattern for the type.
255 ///
256 /// Consider using [`from_bits`][BitFlag::from_bits]
257 /// or [`from_bits_truncate`][BitFlag::from_bits_truncate] instead.
258 ///
259 /// # Safety
260 ///
261 /// All bits set in `val` must correspond to a value of the enum.
262 ///
263 /// # Example
264 ///
265 /// This is a convenience reexport of [`BitFlags::from_bits_unchecked`]. It can be
266 /// called with `MyFlag::from_bits_unchecked(bits)`, thus bypassing the need for
267 /// type hints in some situations.
268 ///
269 /// ```
270 /// # use enumflags2::{bitflags, BitFlags};
271 /// #[bitflags]
272 /// #[repr(u8)]
273 /// #[derive(Clone, Copy, PartialEq, Eq)]
274 /// enum MyFlag {
275 /// One = 1 << 0,
276 /// Two = 1 << 1,
277 /// Three = 1 << 2,
278 /// }
279 ///
280 /// use enumflags2::BitFlag;
281 ///
282 /// let flags = unsafe {
283 /// MyFlag::from_bits_unchecked(0b011)
284 /// };
285 ///
286 /// assert_eq!(flags.contains(MyFlag::One), true);
287 /// assert_eq!(flags.contains(MyFlag::Two), true);
288 /// assert_eq!(flags.contains(MyFlag::Three), false);
289 /// ```
290 #[inline]
291 unsafe fn from_bits_unchecked(bits: Self::Numeric) -> BitFlags<Self> {
292 BitFlags::from_bits_unchecked(bits)
293 }
294}
295
296/// While the module is public, this is only the case because it needs to be
297/// accessed by the macro. Do not use this directly. Stability guarantees
298/// don't apply.
299#[doc(hidden)]
300pub mod _internal {
301 /// A trait automatically implemented by `#[bitflags]` to make the enum
302 /// a valid type parameter for `BitFlags<T>`.
303 ///
304 /// # Safety
305 ///
306 /// The values should reflect reality, like they do if the implementation
307 /// is generated by the procmacro.
308 ///
309 /// `bits` must return the same value as
310 /// [`transmute_copy`][std::mem::transmute_copy].
311 ///
312 /// Representations for all values of `T` must have exactly one bit set.
313 pub unsafe trait RawBitFlags: Copy + Clone + 'static {
314 /// The underlying integer type.
315 type Numeric: BitFlagNum;
316
317 /// A value with no bits set.
318 const EMPTY: Self::Numeric;
319
320 /// The value used by the Default implementation. Equivalent to EMPTY, unless
321 /// customized.
322 const DEFAULT: Self::Numeric;
323
324 /// A value with all flag bits set.
325 const ALL_BITS: Self::Numeric;
326
327 /// The name of the type for debug formatting purposes.
328 ///
329 /// This is typically `BitFlags<EnumName>`
330 const BITFLAGS_TYPE_NAME: &'static str;
331
332 /// Return the bits as a number type.
333 fn bits(self) -> Self::Numeric;
334 }
335
336 use ::core::fmt;
337 use ::core::ops::{BitAnd, BitOr, BitXor, Not, Sub};
338 use ::core::hash::Hash;
339
340 pub trait BitFlagNum:
341 Default
342 + BitOr<Self, Output = Self>
343 + BitAnd<Self, Output = Self>
344 + BitXor<Self, Output = Self>
345 + Sub<Self, Output = Self>
346 + Not<Output = Self>
347 + PartialOrd<Self>
348 + Ord
349 + Hash
350 + fmt::Debug
351 + fmt::Binary
352 + Copy
353 + Clone
354 {
355 const ONE: Self;
356
357 fn is_power_of_two(self) -> bool;
358 fn count_ones(self) -> u32;
359 fn wrapping_neg(self) -> Self;
360 }
361
362 for_each_uint! { $ty $hide_docs =>
363 impl BitFlagNum for $ty {
364 const ONE: Self = 1;
365
366 fn is_power_of_two(self) -> bool {
367 <$ty>::is_power_of_two(self)
368 }
369
370 fn count_ones(self) -> u32 {
371 <$ty>::count_ones(self)
372 }
373
374 fn wrapping_neg(self) -> Self {
375 <$ty>::wrapping_neg(self)
376 }
377 }
378 }
379
380 // Re-export libcore so the macro doesn't inject "extern crate" downstream.
381 pub mod core {
382 pub use core::{convert, ops, option};
383 }
384
385 pub struct AssertionSucceeded;
386 pub struct AssertionFailed;
387 pub trait ExactlyOneBitSet {
388 type X;
389 }
390 impl ExactlyOneBitSet for AssertionSucceeded {
391 type X = ();
392 }
393
394 pub trait AssertionHelper {
395 type Status;
396 }
397
398 impl AssertionHelper for [(); 1] {
399 type Status = AssertionSucceeded;
400 }
401
402 impl AssertionHelper for [(); 0] {
403 type Status = AssertionFailed;
404 }
405
406 pub const fn next_bit(x: u128) -> u128 {
407 1 << x.trailing_ones()
408 }
409}
410
411use _internal::BitFlagNum;
412
413// Internal debug formatting implementations
414mod formatting;
415
416// impl TryFrom<T::Numeric> for BitFlags<T>
417mod fallible;
418pub use crate::fallible::FromBitsError;
419
420mod iter;
421pub use crate::iter::Iter;
422
423mod const_api;
424pub use crate::const_api::ConstToken;
425
426/// Represents a set of flags of some type `T`.
427/// `T` must have the `#[bitflags]` attribute applied.
428///
429/// A `BitFlags<T>` is as large as the `T` itself,
430/// and stores one flag per bit.
431///
432/// ## Comparison operators, [`PartialOrd`] and [`Ord`]
433///
434/// To make it possible to use `BitFlags` as the key of a
435/// [`BTreeMap`][std::collections::BTreeMap], `BitFlags` implements
436/// [`Ord`]. There is no meaningful total order for bitflags,
437/// so the implementation simply compares the integer values of the bits.
438///
439/// Unfortunately, this means that comparing `BitFlags` with an operator
440/// like `<=` will compile, and return values that are probably useless
441/// and not what you expect. In particular, `<=` does *not* check whether
442/// one value is a subset of the other. Use [`BitFlags::contains`] for that.
443///
444/// ## Customizing `Default`
445///
446/// By default, creating an instance of `BitFlags<T>` with `Default` will result
447/// in an empty set. If that's undesirable, you may customize this:
448///
449/// ```
450/// # use enumflags2::{BitFlags, bitflags};
451/// #[bitflags(default = B | C)]
452/// #[repr(u8)]
453/// #[derive(Copy, Clone, Debug, PartialEq)]
454/// enum MyFlag {
455/// A = 0b0001,
456/// B = 0b0010,
457/// C = 0b0100,
458/// D = 0b1000,
459/// }
460///
461/// assert_eq!(BitFlags::default(), MyFlag::B | MyFlag::C);
462/// ```
463///
464/// ## Memory layout
465///
466/// `BitFlags<T>` is marked with the `#[repr(transparent)]` trait, meaning
467/// it can be safely transmuted into the corresponding numeric type.
468///
469/// Usually, the same can be achieved by using [`BitFlags::bits`] in one
470/// direction, and [`BitFlags::from_bits`], [`BitFlags::from_bits_truncate`],
471/// or [`BitFlags::from_bits_unchecked`] in the other direction. However,
472/// transmuting might still be useful if, for example, you're dealing with
473/// an entire array of `BitFlags`.
474///
475/// When transmuting *into* a `BitFlags`, make sure that each set bit
476/// corresponds to an existing flag
477/// (cf. [`from_bits_unchecked`][BitFlags::from_bits_unchecked]).
478///
479/// For example:
480///
481/// ```
482/// # use enumflags2::{BitFlags, bitflags};
483/// #[bitflags]
484/// #[repr(u8)] // <-- the repr determines the numeric type
485/// #[derive(Copy, Clone)]
486/// enum TransmuteMe {
487/// One = 1 << 0,
488/// Two = 1 << 1,
489/// }
490///
491/// # use std::slice;
492/// // NOTE: we use a small, self-contained function to handle the slice
493/// // conversion to make sure the lifetimes are right.
494/// fn transmute_slice<'a>(input: &'a [BitFlags<TransmuteMe>]) -> &'a [u8] {
495/// unsafe {
496/// slice::from_raw_parts(input.as_ptr() as *const u8, input.len())
497/// }
498/// }
499///
500/// let many_flags = &[
501/// TransmuteMe::One.into(),
502/// TransmuteMe::One | TransmuteMe::Two,
503/// ];
504///
505/// let as_nums = transmute_slice(many_flags);
506/// assert_eq!(as_nums, &[0b01, 0b11]);
507/// ```
508///
509/// ## Implementation notes
510///
511/// You might expect this struct to be defined as
512///
513/// ```ignore
514/// struct BitFlags<T: BitFlag> {
515/// value: T::Numeric
516/// }
517/// ```
518///
519/// Ideally, that would be the case. However, because `const fn`s cannot
520/// have trait bounds in current Rust, this would prevent us from providing
521/// most `const fn` APIs. As a workaround, we define `BitFlags` with two
522/// type parameters, with a default for the second one:
523///
524/// ```ignore
525/// struct BitFlags<T, N = <T as BitFlag>::Numeric> {
526/// value: N,
527/// marker: PhantomData<T>,
528/// }
529/// ```
530///
531/// Manually providing a type for the `N` type parameter shouldn't ever
532/// be necessary.
533///
534/// The types substituted for `T` and `N` must always match, creating a
535/// `BitFlags` value where that isn't the case is only possible with
536/// incorrect unsafe code.
537#[derive(Copy, Clone)]
538#[repr(transparent)]
539pub struct BitFlags<T, N = <T as _internal::RawBitFlags>::Numeric> {
540 val: N,
541 marker: PhantomData<T>,
542}
543
544/// `make_bitflags!` provides a succint syntax for creating instances of
545/// `BitFlags<T>`. Instead of repeating the name of your type for each flag
546/// you want to add, try `make_bitflags!(Flags::{Foo | Bar})`.
547/// ```
548/// # use enumflags2::{bitflags, BitFlags, make_bitflags};
549/// # #[bitflags]
550/// # #[repr(u8)]
551/// # #[derive(Clone, Copy, Debug)]
552/// # enum Test {
553/// # A = 1 << 0,
554/// # B = 1 << 1,
555/// # C = 1 << 2,
556/// # }
557/// let x = make_bitflags!(Test::{A | C});
558/// assert_eq!(x, Test::A | Test::C);
559///
560/// // Also works in const contexts:
561/// const X: BitFlags<Test> = make_bitflags!(Test::A);
562/// ```
563#[macro_export]
564macro_rules! make_bitflags {
565 ( $enum:ident ::{ $($variant:ident)|* } ) => {
566 {
567 let mut n = 0;
568 $(
569 {
570 let flag: $enum = $enum::$variant;
571 n |= flag as <$enum as $crate::_internal::RawBitFlags>::Numeric;
572 }
573 )*
574 // SAFETY: The value has been created from numeric values of the underlying
575 // enum, so only valid bits are set.
576 unsafe { $crate::BitFlags::<$enum>::from_bits_unchecked_c(
577 n, $crate::BitFlags::CONST_TOKEN) }
578 }
579 };
580 ( $enum:ident :: $variant:ident ) => {
581 {
582 let flag: $enum = $enum::$variant;
583 let n = flag as <$enum as $crate::_internal::RawBitFlags>::Numeric;
584 // SAFETY: The value has been created from the numeric value of
585 // the underlying enum, so only valid bits are set.
586 unsafe { $crate::BitFlags::<$enum>::from_bits_unchecked_c(
587 n, $crate::BitFlags::CONST_TOKEN) }
588 }
589 };
590}
591
592/// The default value returned is one with all flags unset, i. e. [`empty`][Self::empty],
593/// unless [customized](index.html#customizing-default).
594impl<T> Default for BitFlags<T>
595where
596 T: BitFlag,
597{
598 #[inline(always)]
599 fn default() -> Self {
600 BitFlags {
601 val: T::DEFAULT,
602 marker: PhantomData,
603 }
604 }
605}
606
607impl<T: BitFlag> From<T> for BitFlags<T> {
608 #[inline(always)]
609 fn from(t: T) -> BitFlags<T> {
610 Self::from_flag(t)
611 }
612}
613
614impl<T> BitFlags<T>
615where
616 T: BitFlag,
617{
618 /// Create a `BitFlags` if the raw value provided does not contain
619 /// any illegal flags.
620 ///
621 /// See also: [a convenience re-export in the `BitFlag` trait][BitFlag::from_bits],
622 /// which can help avoid the need for type hints.
623 ///
624 /// ```
625 /// # use enumflags2::{bitflags, BitFlags};
626 /// #[bitflags]
627 /// #[repr(u8)]
628 /// #[derive(Clone, Copy, PartialEq, Eq, Debug)]
629 /// enum MyFlag {
630 /// One = 1 << 0,
631 /// Two = 1 << 1,
632 /// Three = 1 << 2,
633 /// }
634 ///
635 /// let flags: BitFlags<MyFlag> = BitFlags::from_bits(0b11).unwrap();
636 /// assert_eq!(flags.contains(MyFlag::One), true);
637 /// assert_eq!(flags.contains(MyFlag::Two), true);
638 /// assert_eq!(flags.contains(MyFlag::Three), false);
639 /// let invalid = BitFlags::<MyFlag>::from_bits(1 << 3);
640 /// assert!(invalid.is_err());
641 /// ```
642 #[inline]
643 pub fn from_bits(bits: T::Numeric) -> Result<Self, FromBitsError<T>> {
644 let flags = Self::from_bits_truncate(bits);
645 if flags.bits() == bits {
646 Ok(flags)
647 } else {
648 Err(FromBitsError {
649 flags,
650 invalid: bits & !flags.bits(),
651 })
652 }
653 }
654
655 /// Create a `BitFlags` from an underlying bitwise value. If any
656 /// invalid bits are set, ignore them.
657 ///
658 /// See also: [a convenience re-export in the `BitFlag` trait][BitFlag::from_bits_truncate],
659 /// which can help avoid the need for type hints.
660 ///
661 /// ```
662 /// # use enumflags2::{bitflags, BitFlags};
663 /// #[bitflags]
664 /// #[repr(u8)]
665 /// #[derive(Clone, Copy, PartialEq, Eq)]
666 /// enum MyFlag {
667 /// One = 1 << 0,
668 /// Two = 1 << 1,
669 /// Three = 1 << 2,
670 /// }
671 ///
672 /// let flags: BitFlags<MyFlag> = BitFlags::from_bits_truncate(0b1_1011);
673 /// assert_eq!(flags.contains(MyFlag::One), true);
674 /// assert_eq!(flags.contains(MyFlag::Two), true);
675 /// assert_eq!(flags.contains(MyFlag::Three), false);
676 /// ```
677 #[must_use]
678 #[inline(always)]
679 pub fn from_bits_truncate(bits: T::Numeric) -> Self {
680 // SAFETY: We're truncating out all the invalid bits, so the remaining
681 // ones must be valid.
682 unsafe { BitFlags::from_bits_unchecked(bits & T::ALL_BITS) }
683 }
684
685 /// Create a new BitFlags unsafely, without checking if the bits form
686 /// a valid bit pattern for the type.
687 ///
688 /// Consider using [`from_bits`][BitFlags::from_bits]
689 /// or [`from_bits_truncate`][BitFlags::from_bits_truncate] instead.
690 ///
691 /// # Safety
692 ///
693 /// All bits set in `val` must correspond to a value of the enum.
694 ///
695 /// # Example
696 ///
697 /// ```
698 /// # use enumflags2::{bitflags, BitFlags};
699 /// #[bitflags]
700 /// #[repr(u8)]
701 /// #[derive(Clone, Copy, PartialEq, Eq)]
702 /// enum MyFlag {
703 /// One = 1 << 0,
704 /// Two = 1 << 1,
705 /// Three = 1 << 2,
706 /// }
707 ///
708 /// let flags: BitFlags<MyFlag> = unsafe {
709 /// BitFlags::from_bits_unchecked(0b011)
710 /// };
711 ///
712 /// assert_eq!(flags.contains(MyFlag::One), true);
713 /// assert_eq!(flags.contains(MyFlag::Two), true);
714 /// assert_eq!(flags.contains(MyFlag::Three), false);
715 /// ```
716 #[must_use]
717 #[inline(always)]
718 pub unsafe fn from_bits_unchecked(val: T::Numeric) -> Self {
719 BitFlags {
720 val,
721 marker: PhantomData,
722 }
723 }
724
725 /// Turn a `T` into a `BitFlags<T>`. Also available as `flag.into()`.
726 #[must_use]
727 #[inline(always)]
728 pub fn from_flag(flag: T) -> Self {
729 // SAFETY: A value of the underlying enum is valid by definition.
730 unsafe { Self::from_bits_unchecked(flag.bits()) }
731 }
732
733 /// Create a `BitFlags` with no flags set (in other words, with a value of `0`).
734 ///
735 /// See also: [`BitFlag::empty`], a convenience reexport;
736 /// [`BitFlags::EMPTY`], the same functionality available
737 /// as a constant for `const fn` code.
738 ///
739 /// ```
740 /// # use enumflags2::{bitflags, BitFlags};
741 /// #[bitflags]
742 /// #[repr(u8)]
743 /// #[derive(Clone, Copy, PartialEq, Eq)]
744 /// enum MyFlag {
745 /// One = 1 << 0,
746 /// Two = 1 << 1,
747 /// Three = 1 << 2,
748 /// }
749 ///
750 /// let empty: BitFlags<MyFlag> = BitFlags::empty();
751 /// assert!(empty.is_empty());
752 /// assert_eq!(empty.contains(MyFlag::One), false);
753 /// assert_eq!(empty.contains(MyFlag::Two), false);
754 /// assert_eq!(empty.contains(MyFlag::Three), false);
755 /// ```
756 #[inline(always)]
757 pub fn empty() -> Self {
758 Self::EMPTY
759 }
760
761 /// Create a `BitFlags` with all flags set.
762 ///
763 /// See also: [`BitFlag::all`], a convenience reexport;
764 /// [`BitFlags::ALL`], the same functionality available
765 /// as a constant for `const fn` code.
766 ///
767 /// ```
768 /// # use enumflags2::{bitflags, BitFlags};
769 /// #[bitflags]
770 /// #[repr(u8)]
771 /// #[derive(Clone, Copy, PartialEq, Eq)]
772 /// enum MyFlag {
773 /// One = 1 << 0,
774 /// Two = 1 << 1,
775 /// Three = 1 << 2,
776 /// }
777 ///
778 /// let empty: BitFlags<MyFlag> = BitFlags::all();
779 /// assert!(empty.is_all());
780 /// assert_eq!(empty.contains(MyFlag::One), true);
781 /// assert_eq!(empty.contains(MyFlag::Two), true);
782 /// assert_eq!(empty.contains(MyFlag::Three), true);
783 /// ```
784 #[inline(always)]
785 pub fn all() -> Self {
786 Self::ALL
787 }
788
789 /// Returns true if all flags are set
790 #[inline(always)]
791 pub fn is_all(self) -> bool {
792 self.val == T::ALL_BITS
793 }
794
795 /// Returns true if no flag is set
796 #[inline(always)]
797 pub fn is_empty(self) -> bool {
798 self.val == T::EMPTY
799 }
800
801 /// Returns the number of flags set.
802 #[inline(always)]
803 pub fn len(self) -> usize {
804 self.val.count_ones() as usize
805 }
806
807 /// If exactly one flag is set, the flag is returned. Otherwise, returns `None`.
808 ///
809 /// See also [`Itertools::exactly_one`](https://docs.rs/itertools/latest/itertools/trait.Itertools.html#method.exactly_one).
810 #[inline(always)]
811 pub fn exactly_one(self) -> Option<T> {
812 if self.val.is_power_of_two() {
813 // SAFETY: By the invariant of the BitFlags type, all bits are valid
814 // in isolation for the underlying enum.
815 Some(unsafe { core::mem::transmute_copy(&self.val) })
816 } else {
817 None
818 }
819 }
820
821 /// Returns the underlying bitwise value.
822 ///
823 /// ```
824 /// # use enumflags2::{bitflags, BitFlags};
825 /// #[bitflags]
826 /// #[repr(u8)]
827 /// #[derive(Clone, Copy)]
828 /// enum Flags {
829 /// Foo = 1 << 0,
830 /// Bar = 1 << 1,
831 /// }
832 ///
833 /// let both_flags = Flags::Foo | Flags::Bar;
834 /// assert_eq!(both_flags.bits(), 0b11);
835 /// ```
836 #[inline(always)]
837 pub fn bits(self) -> T::Numeric {
838 self.val
839 }
840
841 /// Returns true if at least one flag is shared.
842 #[inline(always)]
843 pub fn intersects<B: Into<BitFlags<T>>>(self, other: B) -> bool {
844 (self.bits() & other.into().bits()) != Self::EMPTY.val
845 }
846
847 /// Returns true if all flags are contained.
848 #[inline(always)]
849 pub fn contains<B: Into<BitFlags<T>>>(self, other: B) -> bool {
850 let other = other.into();
851 (self.bits() & other.bits()) == other.bits()
852 }
853
854 /// Toggles the matching bits
855 #[inline(always)]
856 pub fn toggle<B: Into<BitFlags<T>>>(&mut self, other: B) {
857 *self ^= other.into();
858 }
859
860 /// Inserts the flags into the BitFlag
861 #[inline(always)]
862 pub fn insert<B: Into<BitFlags<T>>>(&mut self, other: B) {
863 *self |= other.into();
864 }
865
866 /// Removes the matching flags
867 #[inline(always)]
868 pub fn remove<B: Into<BitFlags<T>>>(&mut self, other: B) {
869 *self &= !other.into();
870 }
871
872 /// Inserts if `cond` holds, else removes
873 ///
874 /// ```
875 /// # use enumflags2::bitflags;
876 /// #[bitflags]
877 /// #[derive(Clone, Copy, PartialEq, Debug)]
878 /// #[repr(u8)]
879 /// enum MyFlag {
880 /// A = 1 << 0,
881 /// B = 1 << 1,
882 /// C = 1 << 2,
883 /// }
884 ///
885 /// let mut state = MyFlag::A | MyFlag::C;
886 /// state.set(MyFlag::A | MyFlag::B, false);
887 ///
888 /// // Because the condition was false, both
889 /// // `A` and `B` are removed from the set
890 /// assert_eq!(state, MyFlag::C);
891 /// ```
892 #[inline(always)]
893 pub fn set<B: Into<BitFlags<T>>>(&mut self, other: B, cond: bool) {
894 if cond {
895 self.insert(other);
896 } else {
897 self.remove(other);
898 }
899 }
900}
901
902impl<T, N: PartialEq> PartialEq for BitFlags<T, N> {
903 #[inline(always)]
904 fn eq(&self, other: &Self) -> bool {
905 self.val == other.val
906 }
907}
908
909impl<T, N: Eq> Eq for BitFlags<T, N> {}
910
911impl<T, N: PartialOrd> PartialOrd for BitFlags<T, N> {
912 #[inline(always)]
913 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
914 self.val.partial_cmp(&other.val)
915 }
916}
917
918impl<T, N: Ord> Ord for BitFlags<T, N> {
919 #[inline(always)]
920 fn cmp(&self, other: &Self) -> cmp::Ordering {
921 self.val.cmp(&other.val)
922 }
923}
924
925// Clippy complains when Hash is derived while PartialEq is implemented manually
926impl<T, N: Hash> Hash for BitFlags<T, N> {
927 #[inline(always)]
928 fn hash<H: Hasher>(&self, state: &mut H) {
929 self.val.hash(state)
930 }
931}
932
933impl<T> cmp::PartialEq<T> for BitFlags<T>
934where
935 T: BitFlag,
936{
937 #[inline(always)]
938 fn eq(&self, other: &T) -> bool {
939 self.bits() == Into::<Self>::into(*other).bits()
940 }
941}
942
943impl<T, B> ops::BitOr<B> for BitFlags<T>
944where
945 T: BitFlag,
946 B: Into<BitFlags<T>>,
947{
948 type Output = BitFlags<T>;
949 #[inline(always)]
950 fn bitor(self, other: B) -> BitFlags<T> {
951 // SAFETY: The two operands are known to be composed of valid bits,
952 // and 0 | 0 = 0 in the columns of the invalid bits.
953 unsafe { BitFlags::from_bits_unchecked(self.bits() | other.into().bits()) }
954 }
955}
956
957impl<T, B> ops::BitAnd<B> for BitFlags<T>
958where
959 T: BitFlag,
960 B: Into<BitFlags<T>>,
961{
962 type Output = BitFlags<T>;
963 #[inline(always)]
964 fn bitand(self, other: B) -> BitFlags<T> {
965 // SAFETY: The two operands are known to be composed of valid bits,
966 // and 0 & 0 = 0 in the columns of the invalid bits.
967 unsafe { BitFlags::from_bits_unchecked(self.bits() & other.into().bits()) }
968 }
969}
970
971impl<T, B> ops::BitXor<B> for BitFlags<T>
972where
973 T: BitFlag,
974 B: Into<BitFlags<T>>,
975{
976 type Output = BitFlags<T>;
977 #[inline(always)]
978 fn bitxor(self, other: B) -> BitFlags<T> {
979 // SAFETY: The two operands are known to be composed of valid bits,
980 // and 0 ^ 0 = 0 in the columns of the invalid bits.
981 unsafe { BitFlags::from_bits_unchecked(self.bits() ^ other.into().bits()) }
982 }
983}
984
985impl<T, B> ops::BitOrAssign<B> for BitFlags<T>
986where
987 T: BitFlag,
988 B: Into<BitFlags<T>>,
989{
990 #[inline(always)]
991 fn bitor_assign(&mut self, other: B) {
992 *self = *self | other;
993 }
994}
995
996impl<T, B> ops::BitAndAssign<B> for BitFlags<T>
997where
998 T: BitFlag,
999 B: Into<BitFlags<T>>,
1000{
1001 #[inline(always)]
1002 fn bitand_assign(&mut self, other: B) {
1003 *self = *self & other;
1004 }
1005}
1006impl<T, B> ops::BitXorAssign<B> for BitFlags<T>
1007where
1008 T: BitFlag,
1009 B: Into<BitFlags<T>>,
1010{
1011 #[inline(always)]
1012 fn bitxor_assign(&mut self, other: B) {
1013 *self = *self ^ other;
1014 }
1015}
1016
1017impl<T> ops::Not for BitFlags<T>
1018where
1019 T: BitFlag,
1020{
1021 type Output = BitFlags<T>;
1022 #[inline(always)]
1023 fn not(self) -> BitFlags<T> {
1024 BitFlags::from_bits_truncate(!self.bits())
1025 }
1026}
1027
1028#[cfg(feature = "serde")]
1029mod impl_serde {
1030 use super::{BitFlag, BitFlags};
1031 use serde::de::{Error, Unexpected};
1032 use serde::{Deserialize, Serialize};
1033
1034 impl<'a, T> Deserialize<'a> for BitFlags<T>
1035 where
1036 T: BitFlag,
1037 T::Numeric: Deserialize<'a> + Into<u64>,
1038 {
1039 fn deserialize<D: serde::Deserializer<'a>>(d: D) -> Result<Self, D::Error> {
1040 let val = T::Numeric::deserialize(d)?;
1041 Self::from_bits(val).map_err(|_| {
1042 D::Error::invalid_value(
1043 Unexpected::Unsigned(val.into()),
1044 &"valid bit representation",
1045 )
1046 })
1047 }
1048 }
1049
1050 impl<T> Serialize for BitFlags<T>
1051 where
1052 T: BitFlag,
1053 T::Numeric: Serialize,
1054 {
1055 fn serialize<S: serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
1056 T::Numeric::serialize(&self.val, s)
1057 }
1058 }
1059}