tokio/process/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
//! An implementation of asynchronous process management for Tokio.
//!
//! This module provides a [`Command`] struct that imitates the interface of the
//! [`std::process::Command`] type in the standard library, but provides asynchronous versions of
//! functions that create processes. These functions (`spawn`, `status`, `output` and their
//! variants) return "future aware" types that interoperate with Tokio. The asynchronous process
//! support is provided through signal handling on Unix and system APIs on Windows.
//!
//! [`std::process::Command`]: std::process::Command
//!
//! # Examples
//!
//! Here's an example program which will spawn `echo hello world` and then wait
//! for it complete.
//!
//! ```no_run
//! use tokio::process::Command;
//!
//! #[tokio::main]
//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
//! // The usage is similar as with the standard library's `Command` type
//! let mut child = Command::new("echo")
//! .arg("hello")
//! .arg("world")
//! .spawn()
//! .expect("failed to spawn");
//!
//! // Await until the command completes
//! let status = child.wait().await?;
//! println!("the command exited with: {}", status);
//! Ok(())
//! }
//! ```
//!
//! Next, let's take a look at an example where we not only spawn `echo hello
//! world` but we also capture its output.
//!
//! ```no_run
//! use tokio::process::Command;
//!
//! #[tokio::main]
//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
//! // Like above, but use `output` which returns a future instead of
//! // immediately returning the `Child`.
//! let output = Command::new("echo").arg("hello").arg("world")
//! .output();
//!
//! let output = output.await?;
//!
//! assert!(output.status.success());
//! assert_eq!(output.stdout, b"hello world\n");
//! Ok(())
//! }
//! ```
//!
//! We can also read input line by line.
//!
//! ```no_run
//! use tokio::io::{BufReader, AsyncBufReadExt};
//! use tokio::process::Command;
//!
//! use std::process::Stdio;
//!
//! #[tokio::main]
//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
//! let mut cmd = Command::new("cat");
//!
//! // Specify that we want the command's standard output piped back to us.
//! // By default, standard input/output/error will be inherited from the
//! // current process (for example, this means that standard input will
//! // come from the keyboard and standard output/error will go directly to
//! // the terminal if this process is invoked from the command line).
//! cmd.stdout(Stdio::piped());
//!
//! let mut child = cmd.spawn()
//! .expect("failed to spawn command");
//!
//! let stdout = child.stdout.take()
//! .expect("child did not have a handle to stdout");
//!
//! let mut reader = BufReader::new(stdout).lines();
//!
//! // Ensure the child process is spawned in the runtime so it can
//! // make progress on its own while we await for any output.
//! tokio::spawn(async move {
//! let status = child.wait().await
//! .expect("child process encountered an error");
//!
//! println!("child status was: {}", status);
//! });
//!
//! while let Some(line) = reader.next_line().await? {
//! println!("Line: {}", line);
//! }
//!
//! Ok(())
//! }
//! ```
//!
//! Here is another example using `sort` writing into the child process
//! standard input, capturing the output of the sorted text.
//!
//! ```no_run
//! use tokio::io::AsyncWriteExt;
//! use tokio::process::Command;
//!
//! use std::process::Stdio;
//!
//! #[tokio::main]
//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
//! let mut cmd = Command::new("sort");
//!
//! // Specifying that we want pipe both the output and the input.
//! // Similarly to capturing the output, by configuring the pipe
//! // to stdin it can now be used as an asynchronous writer.
//! cmd.stdout(Stdio::piped());
//! cmd.stdin(Stdio::piped());
//!
//! let mut child = cmd.spawn().expect("failed to spawn command");
//!
//! // These are the animals we want to sort
//! let animals: &[&str] = &["dog", "bird", "frog", "cat", "fish"];
//!
//! let mut stdin = child
//! .stdin
//! .take()
//! .expect("child did not have a handle to stdin");
//!
//! // Write our animals to the child process
//! // Note that the behavior of `sort` is to buffer _all input_ before writing any output.
//! // In the general sense, it is recommended to write to the child in a separate task as
//! // awaiting its exit (or output) to avoid deadlocks (for example, the child tries to write
//! // some output but gets stuck waiting on the parent to read from it, meanwhile the parent
//! // is stuck waiting to write its input completely before reading the output).
//! stdin
//! .write(animals.join("\n").as_bytes())
//! .await
//! .expect("could not write to stdin");
//!
//! // We drop the handle here which signals EOF to the child process.
//! // This tells the child process that it there is no more data on the pipe.
//! drop(stdin);
//!
//! let op = child.wait_with_output().await?;
//!
//! // Results should come back in sorted order
//! assert_eq!(op.stdout, "bird\ncat\ndog\nfish\nfrog\n".as_bytes());
//!
//! Ok(())
//! }
//! ```
//!
//! With some coordination, we can also pipe the output of one command into
//! another.
//!
//! ```no_run
//! use tokio::join;
//! use tokio::process::Command;
//! use std::process::Stdio;
//!
//! #[tokio::main]
//! async fn main() -> Result<(), Box<dyn std::error::Error>> {
//! let mut echo = Command::new("echo")
//! .arg("hello world!")
//! .stdout(Stdio::piped())
//! .spawn()
//! .expect("failed to spawn echo");
//!
//! let tr_stdin: Stdio = echo
//! .stdout
//! .take()
//! .unwrap()
//! .try_into()
//! .expect("failed to convert to Stdio");
//!
//! let tr = Command::new("tr")
//! .arg("a-z")
//! .arg("A-Z")
//! .stdin(tr_stdin)
//! .stdout(Stdio::piped())
//! .spawn()
//! .expect("failed to spawn tr");
//!
//! let (echo_result, tr_output) = join!(echo.wait(), tr.wait_with_output());
//!
//! assert!(echo_result.unwrap().success());
//!
//! let tr_output = tr_output.expect("failed to await tr");
//! assert!(tr_output.status.success());
//!
//! assert_eq!(tr_output.stdout, b"HELLO WORLD!\n");
//!
//! Ok(())
//! }
//! ```
//!
//! # Caveats
//!
//! ## Dropping/Cancellation
//!
//! Similar to the behavior to the standard library, and unlike the futures
//! paradigm of dropping-implies-cancellation, a spawned process will, by
//! default, continue to execute even after the `Child` handle has been dropped.
//!
//! The [`Command::kill_on_drop`] method can be used to modify this behavior
//! and kill the child process if the `Child` wrapper is dropped before it
//! has exited.
//!
//! ## Unix Processes
//!
//! On Unix platforms processes must be "reaped" by their parent process after
//! they have exited in order to release all OS resources. A child process which
//! has exited, but has not yet been reaped by its parent is considered a "zombie"
//! process. Such processes continue to count against limits imposed by the system,
//! and having too many zombie processes present can prevent additional processes
//! from being spawned.
//!
//! The tokio runtime will, on a best-effort basis, attempt to reap and clean up
//! any process which it has spawned. No additional guarantees are made with regard to
//! how quickly or how often this procedure will take place.
//!
//! It is recommended to avoid dropping a [`Child`] process handle before it has been
//! fully `await`ed if stricter cleanup guarantees are required.
//!
//! [`Command`]: crate::process::Command
//! [`Command::kill_on_drop`]: crate::process::Command::kill_on_drop
//! [`Child`]: crate::process::Child
#[path = "unix/mod.rs"]
#[cfg(unix)]
mod imp;
#[cfg(unix)]
pub(crate) mod unix {
pub(crate) use super::imp::*;
}
#[path = "windows.rs"]
#[cfg(windows)]
mod imp;
mod kill;
use crate::io::{AsyncRead, AsyncWrite, ReadBuf};
use crate::process::kill::Kill;
use std::ffi::OsStr;
use std::future::Future;
use std::io;
use std::path::Path;
use std::pin::Pin;
use std::process::{Command as StdCommand, ExitStatus, Output, Stdio};
use std::task::{ready, Context, Poll};
#[cfg(unix)]
use std::os::unix::process::CommandExt;
#[cfg(windows)]
use std::os::windows::process::CommandExt;
cfg_windows! {
use crate::os::windows::io::{AsRawHandle, RawHandle};
}
/// This structure mimics the API of [`std::process::Command`] found in the standard library, but
/// replaces functions that create a process with an asynchronous variant. The main provided
/// asynchronous functions are [spawn](Command::spawn), [status](Command::status), and
/// [output](Command::output).
///
/// `Command` uses asynchronous versions of some `std` types (for example [`Child`]).
///
/// [`std::process::Command`]: std::process::Command
/// [`Child`]: struct@Child
#[derive(Debug)]
pub struct Command {
std: StdCommand,
kill_on_drop: bool,
}
pub(crate) struct SpawnedChild {
child: imp::Child,
stdin: Option<imp::ChildStdio>,
stdout: Option<imp::ChildStdio>,
stderr: Option<imp::ChildStdio>,
}
impl Command {
/// Constructs a new `Command` for launching the program at
/// path `program`, with the following default configuration:
///
/// * No arguments to the program
/// * Inherit the current process's environment
/// * Inherit the current process's working directory
/// * Inherit stdin/stdout/stderr for `spawn` or `status`, but create pipes for `output`
///
/// Builder methods are provided to change these defaults and
/// otherwise configure the process.
///
/// If `program` is not an absolute path, the `PATH` will be searched in
/// an OS-defined way.
///
/// The search path to be used may be controlled by setting the
/// `PATH` environment variable on the Command,
/// but this has some implementation limitations on Windows
/// (see issue [rust-lang/rust#37519]).
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use tokio::process::Command;
/// let mut command = Command::new("sh");
/// # let _ = command.output(); // assert borrow checker
/// ```
///
/// [rust-lang/rust#37519]: https://github.com/rust-lang/rust/issues/37519
pub fn new<S: AsRef<OsStr>>(program: S) -> Command {
Self::from(StdCommand::new(program))
}
/// Cheaply convert to a `&std::process::Command` for places where the type from the standard
/// library is expected.
pub fn as_std(&self) -> &StdCommand {
&self.std
}
/// Cheaply convert to a `&mut std::process::Command` for places where the type from the
/// standard library is expected.
pub fn as_std_mut(&mut self) -> &mut StdCommand {
&mut self.std
}
/// Cheaply convert into a `std::process::Command`.
///
/// Note that Tokio specific options will be lost. Currently, this only applies to [`kill_on_drop`].
///
/// [`kill_on_drop`]: Command::kill_on_drop
pub fn into_std(self) -> StdCommand {
self.std
}
/// Adds an argument to pass to the program.
///
/// Only one argument can be passed per use. So instead of:
///
/// ```no_run
/// let mut command = tokio::process::Command::new("sh");
/// command.arg("-C /path/to/repo");
///
/// # let _ = command.output(); // assert borrow checker
/// ```
///
/// usage would be:
///
/// ```no_run
/// let mut command = tokio::process::Command::new("sh");
/// command.arg("-C");
/// command.arg("/path/to/repo");
///
/// # let _ = command.output(); // assert borrow checker
/// ```
///
/// To pass multiple arguments see [`args`].
///
/// [`args`]: method@Self::args
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// # async fn test() { // allow using await
/// use tokio::process::Command;
///
/// let output = Command::new("ls")
/// .arg("-l")
/// .arg("-a")
/// .output().await.unwrap();
/// # }
///
/// ```
pub fn arg<S: AsRef<OsStr>>(&mut self, arg: S) -> &mut Command {
self.std.arg(arg);
self
}
/// Adds multiple arguments to pass to the program.
///
/// To pass a single argument see [`arg`].
///
/// [`arg`]: method@Self::arg
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// # async fn test() { // allow using await
/// use tokio::process::Command;
///
/// let output = Command::new("ls")
/// .args(&["-l", "-a"])
/// .output().await.unwrap();
/// # }
/// ```
pub fn args<I, S>(&mut self, args: I) -> &mut Command
where
I: IntoIterator<Item = S>,
S: AsRef<OsStr>,
{
self.std.args(args);
self
}
cfg_windows! {
/// Append literal text to the command line without any quoting or escaping.
///
/// This is useful for passing arguments to `cmd.exe /c`, which doesn't follow
/// `CommandLineToArgvW` escaping rules.
pub fn raw_arg<S: AsRef<OsStr>>(&mut self, text_to_append_as_is: S) -> &mut Command {
self.std.raw_arg(text_to_append_as_is);
self
}
}
/// Inserts or updates an environment variable mapping.
///
/// Note that environment variable names are case-insensitive (but case-preserving) on Windows,
/// and case-sensitive on all other platforms.
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// # async fn test() { // allow using await
/// use tokio::process::Command;
///
/// let output = Command::new("ls")
/// .env("PATH", "/bin")
/// .output().await.unwrap();
/// # }
/// ```
pub fn env<K, V>(&mut self, key: K, val: V) -> &mut Command
where
K: AsRef<OsStr>,
V: AsRef<OsStr>,
{
self.std.env(key, val);
self
}
/// Adds or updates multiple environment variable mappings.
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// # async fn test() { // allow using await
/// use tokio::process::Command;
/// use std::process::{Stdio};
/// use std::env;
/// use std::collections::HashMap;
///
/// let filtered_env : HashMap<String, String> =
/// env::vars().filter(|&(ref k, _)|
/// k == "TERM" || k == "TZ" || k == "LANG" || k == "PATH"
/// ).collect();
///
/// let output = Command::new("printenv")
/// .stdin(Stdio::null())
/// .stdout(Stdio::inherit())
/// .env_clear()
/// .envs(&filtered_env)
/// .output().await.unwrap();
/// # }
/// ```
pub fn envs<I, K, V>(&mut self, vars: I) -> &mut Command
where
I: IntoIterator<Item = (K, V)>,
K: AsRef<OsStr>,
V: AsRef<OsStr>,
{
self.std.envs(vars);
self
}
/// Removes an environment variable mapping.
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// # async fn test() { // allow using await
/// use tokio::process::Command;
///
/// let output = Command::new("ls")
/// .env_remove("PATH")
/// .output().await.unwrap();
/// # }
/// ```
pub fn env_remove<K: AsRef<OsStr>>(&mut self, key: K) -> &mut Command {
self.std.env_remove(key);
self
}
/// Clears the entire environment map for the child process.
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// # async fn test() { // allow using await
/// use tokio::process::Command;
///
/// let output = Command::new("ls")
/// .env_clear()
/// .output().await.unwrap();
/// # }
/// ```
pub fn env_clear(&mut self) -> &mut Command {
self.std.env_clear();
self
}
/// Sets the working directory for the child process.
///
/// # Platform-specific behavior
///
/// If the program path is relative (e.g., `"./script.sh"`), it's ambiguous
/// whether it should be interpreted relative to the parent's working
/// directory or relative to `current_dir`. The behavior in this case is
/// platform specific and unstable, and it's recommended to use
/// [`canonicalize`] to get an absolute program path instead.
///
/// [`canonicalize`]: crate::fs::canonicalize()
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// # async fn test() { // allow using await
/// use tokio::process::Command;
///
/// let output = Command::new("ls")
/// .current_dir("/bin")
/// .output().await.unwrap();
/// # }
/// ```
pub fn current_dir<P: AsRef<Path>>(&mut self, dir: P) -> &mut Command {
self.std.current_dir(dir);
self
}
/// Sets configuration for the child process's standard input (stdin) handle.
///
/// Defaults to [`inherit`].
///
/// [`inherit`]: std::process::Stdio::inherit
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// # async fn test() { // allow using await
/// use std::process::{Stdio};
/// use tokio::process::Command;
///
/// let output = Command::new("ls")
/// .stdin(Stdio::null())
/// .output().await.unwrap();
/// # }
/// ```
pub fn stdin<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
self.std.stdin(cfg);
self
}
/// Sets configuration for the child process's standard output (stdout) handle.
///
/// Defaults to [`inherit`] when used with `spawn` or `status`, and
/// defaults to [`piped`] when used with `output`.
///
/// [`inherit`]: std::process::Stdio::inherit
/// [`piped`]: std::process::Stdio::piped
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// # async fn test() { // allow using await
/// use tokio::process::Command;
/// use std::process::Stdio;
///
/// let output = Command::new("ls")
/// .stdout(Stdio::null())
/// .output().await.unwrap();
/// # }
/// ```
pub fn stdout<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
self.std.stdout(cfg);
self
}
/// Sets configuration for the child process's standard error (stderr) handle.
///
/// Defaults to [`inherit`] when used with `spawn` or `status`, and
/// defaults to [`piped`] when used with `output`.
///
/// [`inherit`]: std::process::Stdio::inherit
/// [`piped`]: std::process::Stdio::piped
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// # async fn test() { // allow using await
/// use tokio::process::Command;
/// use std::process::{Stdio};
///
/// let output = Command::new("ls")
/// .stderr(Stdio::null())
/// .output().await.unwrap();
/// # }
/// ```
pub fn stderr<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
self.std.stderr(cfg);
self
}
/// Controls whether a `kill` operation should be invoked on a spawned child
/// process when its corresponding `Child` handle is dropped.
///
/// By default, this value is assumed to be `false`, meaning the next spawned
/// process will not be killed on drop, similar to the behavior of the standard
/// library.
///
/// # Caveats
///
/// On Unix platforms processes must be "reaped" by their parent process after
/// they have exited in order to release all OS resources. A child process which
/// has exited, but has not yet been reaped by its parent is considered a "zombie"
/// process. Such processes continue to count against limits imposed by the system,
/// and having too many zombie processes present can prevent additional processes
/// from being spawned.
///
/// Although issuing a `kill` signal to the child process is a synchronous
/// operation, the resulting zombie process cannot be `.await`ed inside of the
/// destructor to avoid blocking other tasks. The tokio runtime will, on a
/// best-effort basis, attempt to reap and clean up such processes in the
/// background, but no additional guarantees are made with regard to
/// how quickly or how often this procedure will take place.
///
/// If stronger guarantees are required, it is recommended to avoid dropping
/// a [`Child`] handle where possible, and instead utilize `child.wait().await`
/// or `child.kill().await` where possible.
pub fn kill_on_drop(&mut self, kill_on_drop: bool) -> &mut Command {
self.kill_on_drop = kill_on_drop;
self
}
cfg_windows! {
/// Sets the [process creation flags][1] to be passed to `CreateProcess`.
///
/// These will always be ORed with `CREATE_UNICODE_ENVIRONMENT`.
///
/// [1]: https://msdn.microsoft.com/en-us/library/windows/desktop/ms684863(v=vs.85).aspx
pub fn creation_flags(&mut self, flags: u32) -> &mut Command {
self.std.creation_flags(flags);
self
}
}
/// Sets the child process's user ID. This translates to a
/// `setuid` call in the child process. Failure in the `setuid`
/// call will cause the spawn to fail.
#[cfg(unix)]
#[cfg_attr(docsrs, doc(cfg(unix)))]
pub fn uid(&mut self, id: u32) -> &mut Command {
#[cfg(target_os = "nto")]
let id = id as i32;
self.std.uid(id);
self
}
/// Similar to `uid` but sets the group ID of the child process. This has
/// the same semantics as the `uid` field.
#[cfg(unix)]
#[cfg_attr(docsrs, doc(cfg(unix)))]
pub fn gid(&mut self, id: u32) -> &mut Command {
#[cfg(target_os = "nto")]
let id = id as i32;
self.std.gid(id);
self
}
/// Sets executable argument.
///
/// Set the first process argument, `argv[0]`, to something other than the
/// default executable path.
#[cfg(unix)]
#[cfg_attr(docsrs, doc(cfg(unix)))]
pub fn arg0<S>(&mut self, arg: S) -> &mut Command
where
S: AsRef<OsStr>,
{
self.std.arg0(arg);
self
}
/// Schedules a closure to be run just before the `exec` function is
/// invoked.
///
/// The closure is allowed to return an I/O error whose OS error code will
/// be communicated back to the parent and returned as an error from when
/// the spawn was requested.
///
/// Multiple closures can be registered and they will be called in order of
/// their registration. If a closure returns `Err` then no further closures
/// will be called and the spawn operation will immediately return with a
/// failure.
///
/// # Safety
///
/// This closure will be run in the context of the child process after a
/// `fork`. This primarily means that any modifications made to memory on
/// behalf of this closure will **not** be visible to the parent process.
/// This is often a very constrained environment where normal operations
/// like `malloc` or acquiring a mutex are not guaranteed to work (due to
/// other threads perhaps still running when the `fork` was run).
///
/// This also means that all resources such as file descriptors and
/// memory-mapped regions got duplicated. It is your responsibility to make
/// sure that the closure does not violate library invariants by making
/// invalid use of these duplicates.
///
/// When this closure is run, aspects such as the stdio file descriptors and
/// working directory have successfully been changed, so output to these
/// locations may not appear where intended.
#[cfg(unix)]
#[cfg_attr(docsrs, doc(cfg(unix)))]
pub unsafe fn pre_exec<F>(&mut self, f: F) -> &mut Command
where
F: FnMut() -> io::Result<()> + Send + Sync + 'static,
{
self.std.pre_exec(f);
self
}
/// Sets the process group ID (PGID) of the child process. Equivalent to a
/// `setpgid` call in the child process, but may be more efficient.
///
/// Process groups determine which processes receive signals.
///
/// # Examples
///
/// Pressing Ctrl-C in a terminal will send `SIGINT` to all processes
/// in the current foreground process group. By spawning the `sleep`
/// subprocess in a new process group, it will not receive `SIGINT`
/// from the terminal.
///
/// The parent process could install a [signal handler] and manage the
/// process on its own terms.
///
/// A process group ID of 0 will use the process ID as the PGID.
///
/// ```no_run
/// # async fn test() { // allow using await
/// use tokio::process::Command;
///
/// let output = Command::new("sleep")
/// .arg("10")
/// .process_group(0)
/// .output()
/// .await
/// .unwrap();
/// # }
/// ```
///
/// [signal handler]: crate::signal
#[cfg(unix)]
#[cfg_attr(docsrs, doc(cfg(unix)))]
pub fn process_group(&mut self, pgroup: i32) -> &mut Command {
self.std.process_group(pgroup);
self
}
/// Executes the command as a child process, returning a handle to it.
///
/// By default, stdin, stdout and stderr are inherited from the parent.
///
/// This method will spawn the child process synchronously and return a
/// handle to a future-aware child process. The `Child` returned implements
/// `Future` itself to acquire the `ExitStatus` of the child, and otherwise
/// the `Child` has methods to acquire handles to the stdin, stdout, and
/// stderr streams.
///
/// All I/O this child does will be associated with the current default
/// event loop.
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// # if cfg!(miri) { return } // No `pidfd_spawnp` in miri.
/// use tokio::process::Command;
///
/// async fn run_ls() -> std::process::ExitStatus {
/// Command::new("ls")
/// .spawn()
/// .expect("ls command failed to start")
/// .wait()
/// .await
/// .expect("ls command failed to run")
/// }
/// ```
///
/// # Caveats
///
/// ## Dropping/Cancellation
///
/// Similar to the behavior to the standard library, and unlike the futures
/// paradigm of dropping-implies-cancellation, a spawned process will, by
/// default, continue to execute even after the `Child` handle has been dropped.
///
/// The [`Command::kill_on_drop`] method can be used to modify this behavior
/// and kill the child process if the `Child` wrapper is dropped before it
/// has exited.
///
/// ## Unix Processes
///
/// On Unix platforms processes must be "reaped" by their parent process after
/// they have exited in order to release all OS resources. A child process which
/// has exited, but has not yet been reaped by its parent is considered a "zombie"
/// process. Such processes continue to count against limits imposed by the system,
/// and having too many zombie processes present can prevent additional processes
/// from being spawned.
///
/// The tokio runtime will, on a best-effort basis, attempt to reap and clean up
/// any process which it has spawned. No additional guarantees are made with regard to
/// how quickly or how often this procedure will take place.
///
/// It is recommended to avoid dropping a [`Child`] process handle before it has been
/// fully `await`ed if stricter cleanup guarantees are required.
///
/// [`Command`]: crate::process::Command
/// [`Command::kill_on_drop`]: crate::process::Command::kill_on_drop
/// [`Child`]: crate::process::Child
///
/// # Errors
///
/// On Unix platforms this method will fail with `std::io::ErrorKind::WouldBlock`
/// if the system process limit is reached (which includes other applications
/// running on the system).
pub fn spawn(&mut self) -> io::Result<Child> {
imp::spawn_child(&mut self.std).map(|spawned_child| Child {
child: FusedChild::Child(ChildDropGuard {
inner: spawned_child.child,
kill_on_drop: self.kill_on_drop,
}),
stdin: spawned_child.stdin.map(|inner| ChildStdin { inner }),
stdout: spawned_child.stdout.map(|inner| ChildStdout { inner }),
stderr: spawned_child.stderr.map(|inner| ChildStderr { inner }),
})
}
/// Executes the command as a child process, waiting for it to finish and
/// collecting its exit status.
///
/// By default, stdin, stdout and stderr are inherited from the parent.
/// If any input/output handles are set to a pipe then they will be immediately
/// closed after the child is spawned.
///
/// All I/O this child does will be associated with the current default
/// event loop.
///
/// The destructor of the future returned by this function will kill
/// the child if [`kill_on_drop`] is set to true.
///
/// [`kill_on_drop`]: fn@Self::kill_on_drop
///
/// # Errors
///
/// This future will return an error if the child process cannot be spawned
/// or if there is an error while awaiting its status.
///
/// On Unix platforms this method will fail with `std::io::ErrorKind::WouldBlock`
/// if the system process limit is reached (which includes other applications
/// running on the system).
///
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use tokio::process::Command;
///
/// async fn run_ls() -> std::process::ExitStatus {
/// Command::new("ls")
/// .status()
/// .await
/// .expect("ls command failed to run")
/// }
/// ```
pub fn status(&mut self) -> impl Future<Output = io::Result<ExitStatus>> {
let child = self.spawn();
async {
let mut child = child?;
// Ensure we close any stdio handles so we can't deadlock
// waiting on the child which may be waiting to read/write
// to a pipe we're holding.
child.stdin.take();
child.stdout.take();
child.stderr.take();
child.wait().await
}
}
/// Executes the command as a child process, waiting for it to finish and
/// collecting all of its output.
///
/// > **Note**: this method, unlike the standard library, will
/// > unconditionally configure the stdout/stderr handles to be pipes, even
/// > if they have been previously configured. If this is not desired then
/// > the `spawn` method should be used in combination with the
/// > `wait_with_output` method on child.
///
/// This method will return a future representing the collection of the
/// child process's stdout/stderr. It will resolve to
/// the `Output` type in the standard library, containing `stdout` and
/// `stderr` as `Vec<u8>` along with an `ExitStatus` representing how the
/// process exited.
///
/// All I/O this child does will be associated with the current default
/// event loop.
///
/// The destructor of the future returned by this function will kill
/// the child if [`kill_on_drop`] is set to true.
///
/// [`kill_on_drop`]: fn@Self::kill_on_drop
///
/// # Errors
///
/// This future will return an error if the child process cannot be spawned
/// or if there is an error while awaiting its status.
///
/// On Unix platforms this method will fail with `std::io::ErrorKind::WouldBlock`
/// if the system process limit is reached (which includes other applications
/// running on the system).
/// # Examples
///
/// Basic usage:
///
/// ```no_run
/// use tokio::process::Command;
///
/// async fn run_ls() {
/// let output: std::process::Output = Command::new("ls")
/// .output()
/// .await
/// .expect("ls command failed to run");
/// println!("stderr of ls: {:?}", output.stderr);
/// }
/// ```
pub fn output(&mut self) -> impl Future<Output = io::Result<Output>> {
self.std.stdout(Stdio::piped());
self.std.stderr(Stdio::piped());
let child = self.spawn();
async { child?.wait_with_output().await }
}
}
impl From<StdCommand> for Command {
fn from(std: StdCommand) -> Command {
Command {
std,
kill_on_drop: false,
}
}
}
/// A drop guard which can ensure the child process is killed on drop if specified.
#[derive(Debug)]
struct ChildDropGuard<T: Kill> {
inner: T,
kill_on_drop: bool,
}
impl<T: Kill> Kill for ChildDropGuard<T> {
fn kill(&mut self) -> io::Result<()> {
let ret = self.inner.kill();
if ret.is_ok() {
self.kill_on_drop = false;
}
ret
}
}
impl<T: Kill> Drop for ChildDropGuard<T> {
fn drop(&mut self) {
if self.kill_on_drop {
drop(self.kill());
}
}
}
impl<T, E, F> Future for ChildDropGuard<F>
where
F: Future<Output = Result<T, E>> + Kill + Unpin,
{
type Output = Result<T, E>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
ready!(crate::trace::trace_leaf(cx));
// Keep track of task budget
let coop = ready!(crate::runtime::coop::poll_proceed(cx));
let ret = Pin::new(&mut self.inner).poll(cx);
if let Poll::Ready(Ok(_)) = ret {
// Avoid the overhead of trying to kill a reaped process
self.kill_on_drop = false;
}
if ret.is_ready() {
coop.made_progress();
}
ret
}
}
/// Keeps track of the exit status of a child process without worrying about
/// polling the underlying futures even after they have completed.
#[derive(Debug)]
enum FusedChild {
Child(ChildDropGuard<imp::Child>),
Done(ExitStatus),
}
/// Representation of a child process spawned onto an event loop.
///
/// # Caveats
/// Similar to the behavior to the standard library, and unlike the futures
/// paradigm of dropping-implies-cancellation, a spawned process will, by
/// default, continue to execute even after the `Child` handle has been dropped.
///
/// The `Command::kill_on_drop` method can be used to modify this behavior
/// and kill the child process if the `Child` wrapper is dropped before it
/// has exited.
#[derive(Debug)]
pub struct Child {
child: FusedChild,
/// The handle for writing to the child's standard input (stdin), if it has
/// been captured. To avoid partially moving the `child` and thus blocking
/// yourself from calling functions on `child` while using `stdin`, you might
/// find it helpful to do:
///
/// ```no_run
/// # let mut child = tokio::process::Command::new("echo").spawn().unwrap();
/// let stdin = child.stdin.take().unwrap();
/// ```
pub stdin: Option<ChildStdin>,
/// The handle for reading from the child's standard output (stdout), if it
/// has been captured. You might find it helpful to do
///
/// ```no_run
/// # let mut child = tokio::process::Command::new("echo").spawn().unwrap();
/// let stdout = child.stdout.take().unwrap();
/// ```
///
/// to avoid partially moving the `child` and thus blocking yourself from calling
/// functions on `child` while using `stdout`.
pub stdout: Option<ChildStdout>,
/// The handle for reading from the child's standard error (stderr), if it
/// has been captured. You might find it helpful to do
///
/// ```no_run
/// # let mut child = tokio::process::Command::new("echo").spawn().unwrap();
/// let stderr = child.stderr.take().unwrap();
/// ```
///
/// to avoid partially moving the `child` and thus blocking yourself from calling
/// functions on `child` while using `stderr`.
pub stderr: Option<ChildStderr>,
}
impl Child {
/// Returns the OS-assigned process identifier associated with this child
/// while it is still running.
///
/// Once the child has been polled to completion this will return `None`.
/// This is done to avoid confusion on platforms like Unix where the OS
/// identifier could be reused once the process has completed.
pub fn id(&self) -> Option<u32> {
match &self.child {
FusedChild::Child(child) => Some(child.inner.id()),
FusedChild::Done(_) => None,
}
}
cfg_windows! {
/// Extracts the raw handle of the process associated with this child while
/// it is still running. Returns `None` if the child has exited.
pub fn raw_handle(&self) -> Option<RawHandle> {
match &self.child {
FusedChild::Child(c) => Some(c.inner.as_raw_handle()),
FusedChild::Done(_) => None,
}
}
}
/// Attempts to force the child to exit, but does not wait for the request
/// to take effect.
///
/// On Unix platforms, this is the equivalent to sending a `SIGKILL`. Note
/// that on Unix platforms it is possible for a zombie process to remain
/// after a kill is sent; to avoid this, the caller should ensure that either
/// `child.wait().await` or `child.try_wait()` is invoked successfully.
pub fn start_kill(&mut self) -> io::Result<()> {
match &mut self.child {
FusedChild::Child(child) => child.kill(),
FusedChild::Done(_) => Err(io::Error::new(
io::ErrorKind::InvalidInput,
"invalid argument: can't kill an exited process",
)),
}
}
/// Forces the child to exit.
///
/// This is equivalent to sending a `SIGKILL` on unix platforms.
///
/// If the child has to be killed remotely, it is possible to do it using
/// a combination of the select! macro and a `oneshot` channel. In the following
/// example, the child will run until completion unless a message is sent on
/// the `oneshot` channel. If that happens, the child is killed immediately
/// using the `.kill()` method.
///
/// ```no_run
/// use tokio::process::Command;
/// use tokio::sync::oneshot::channel;
///
/// #[tokio::main]
/// async fn main() {
/// let (send, recv) = channel::<()>();
/// let mut child = Command::new("sleep").arg("1").spawn().unwrap();
/// tokio::spawn(async move { send.send(()) });
/// tokio::select! {
/// _ = child.wait() => {}
/// _ = recv => child.kill().await.expect("kill failed"),
/// }
/// }
/// ```
pub async fn kill(&mut self) -> io::Result<()> {
self.start_kill()?;
self.wait().await?;
Ok(())
}
/// Waits for the child to exit completely, returning the status that it
/// exited with. This function will continue to have the same return value
/// after it has been called at least once.
///
/// The stdin handle to the child process, if any, will be closed
/// before waiting. This helps avoid deadlock: it ensures that the
/// child does not block waiting for input from the parent, while
/// the parent waits for the child to exit.
///
/// If the caller wishes to explicitly control when the child's stdin
/// handle is closed, they may `.take()` it before calling `.wait()`:
///
/// # Cancel safety
///
/// This function is cancel safe.
///
/// ```
/// # if cfg!(miri) { return } // No `pidfd_spawnp` in miri.
/// # #[cfg(not(unix))]fn main(){}
/// # #[cfg(unix)]
/// use tokio::io::AsyncWriteExt;
/// # #[cfg(unix)]
/// use tokio::process::Command;
/// # #[cfg(unix)]
/// use std::process::Stdio;
///
/// # #[cfg(unix)]
/// #[tokio::main]
/// async fn main() {
/// let mut child = Command::new("cat")
/// .stdin(Stdio::piped())
/// .spawn()
/// .unwrap();
///
/// let mut stdin = child.stdin.take().unwrap();
/// tokio::spawn(async move {
/// // do something with stdin here...
/// stdin.write_all(b"hello world\n").await.unwrap();
///
/// // then drop when finished
/// drop(stdin);
/// });
///
/// // wait for the process to complete
/// let _ = child.wait().await;
/// }
/// ```
pub async fn wait(&mut self) -> io::Result<ExitStatus> {
// Ensure stdin is closed so the child isn't stuck waiting on
// input while the parent is waiting for it to exit.
drop(self.stdin.take());
match &mut self.child {
FusedChild::Done(exit) => Ok(*exit),
FusedChild::Child(child) => {
let ret = child.await;
if let Ok(exit) = ret {
self.child = FusedChild::Done(exit);
}
ret
}
}
}
/// Attempts to collect the exit status of the child if it has already
/// exited.
///
/// This function will not block the calling thread and will only
/// check to see if the child process has exited or not. If the child has
/// exited then on Unix the process ID is reaped. This function is
/// guaranteed to repeatedly return a successful exit status so long as the
/// child has already exited.
///
/// If the child has exited, then `Ok(Some(status))` is returned. If the
/// exit status is not available at this time then `Ok(None)` is returned.
/// If an error occurs, then that error is returned.
///
/// Note that unlike `wait`, this function will not attempt to drop stdin,
/// nor will it wake the current task if the child exits.
pub fn try_wait(&mut self) -> io::Result<Option<ExitStatus>> {
match &mut self.child {
FusedChild::Done(exit) => Ok(Some(*exit)),
FusedChild::Child(guard) => {
let ret = guard.inner.try_wait();
if let Ok(Some(exit)) = ret {
// Avoid the overhead of trying to kill a reaped process
guard.kill_on_drop = false;
self.child = FusedChild::Done(exit);
}
ret
}
}
}
/// Returns a future that will resolve to an `Output`, containing the exit
/// status, stdout, and stderr of the child process.
///
/// The returned future will simultaneously waits for the child to exit and
/// collect all remaining output on the stdout/stderr handles, returning an
/// `Output` instance.
///
/// The stdin handle to the child process, if any, will be closed before
/// waiting. This helps avoid deadlock: it ensures that the child does not
/// block waiting for input from the parent, while the parent waits for the
/// child to exit.
///
/// By default, stdin, stdout and stderr are inherited from the parent. In
/// order to capture the output into this `Output` it is necessary to create
/// new pipes between parent and child. Use `stdout(Stdio::piped())` or
/// `stderr(Stdio::piped())`, respectively, when creating a `Command`.
pub async fn wait_with_output(mut self) -> io::Result<Output> {
use crate::future::try_join3;
async fn read_to_end<A: AsyncRead + Unpin>(io: &mut Option<A>) -> io::Result<Vec<u8>> {
let mut vec = Vec::new();
if let Some(io) = io.as_mut() {
crate::io::util::read_to_end(io, &mut vec).await?;
}
Ok(vec)
}
let mut stdout_pipe = self.stdout.take();
let mut stderr_pipe = self.stderr.take();
let stdout_fut = read_to_end(&mut stdout_pipe);
let stderr_fut = read_to_end(&mut stderr_pipe);
let (status, stdout, stderr) = try_join3(self.wait(), stdout_fut, stderr_fut).await?;
// Drop happens after `try_join` due to <https://github.com/tokio-rs/tokio/issues/4309>
drop(stdout_pipe);
drop(stderr_pipe);
Ok(Output {
status,
stdout,
stderr,
})
}
}
/// The standard input stream for spawned children.
///
/// This type implements the `AsyncWrite` trait to pass data to the stdin handle of
/// handle of a child process asynchronously.
#[derive(Debug)]
pub struct ChildStdin {
inner: imp::ChildStdio,
}
/// The standard output stream for spawned children.
///
/// This type implements the `AsyncRead` trait to read data from the stdout
/// handle of a child process asynchronously.
#[derive(Debug)]
pub struct ChildStdout {
inner: imp::ChildStdio,
}
/// The standard error stream for spawned children.
///
/// This type implements the `AsyncRead` trait to read data from the stderr
/// handle of a child process asynchronously.
#[derive(Debug)]
pub struct ChildStderr {
inner: imp::ChildStdio,
}
impl ChildStdin {
/// Creates an asynchronous `ChildStdin` from a synchronous one.
///
/// # Errors
///
/// This method may fail if an error is encountered when setting the pipe to
/// non-blocking mode, or when registering the pipe with the runtime's IO
/// driver.
pub fn from_std(inner: std::process::ChildStdin) -> io::Result<Self> {
Ok(Self {
inner: imp::stdio(inner)?,
})
}
}
impl ChildStdout {
/// Creates an asynchronous `ChildStdout` from a synchronous one.
///
/// # Errors
///
/// This method may fail if an error is encountered when setting the pipe to
/// non-blocking mode, or when registering the pipe with the runtime's IO
/// driver.
pub fn from_std(inner: std::process::ChildStdout) -> io::Result<Self> {
Ok(Self {
inner: imp::stdio(inner)?,
})
}
}
impl ChildStderr {
/// Creates an asynchronous `ChildStderr` from a synchronous one.
///
/// # Errors
///
/// This method may fail if an error is encountered when setting the pipe to
/// non-blocking mode, or when registering the pipe with the runtime's IO
/// driver.
pub fn from_std(inner: std::process::ChildStderr) -> io::Result<Self> {
Ok(Self {
inner: imp::stdio(inner)?,
})
}
}
impl AsyncWrite for ChildStdin {
fn poll_write(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
Pin::new(&mut self.inner).poll_write(cx, buf)
}
fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
Pin::new(&mut self.inner).poll_flush(cx)
}
fn poll_shutdown(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
Pin::new(&mut self.inner).poll_shutdown(cx)
}
fn poll_write_vectored(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &[io::IoSlice<'_>],
) -> Poll<Result<usize, io::Error>> {
Pin::new(&mut self.inner).poll_write_vectored(cx, bufs)
}
fn is_write_vectored(&self) -> bool {
self.inner.is_write_vectored()
}
}
impl AsyncRead for ChildStdout {
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<()>> {
Pin::new(&mut self.inner).poll_read(cx, buf)
}
}
impl AsyncRead for ChildStderr {
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<()>> {
Pin::new(&mut self.inner).poll_read(cx, buf)
}
}
impl TryInto<Stdio> for ChildStdin {
type Error = io::Error;
fn try_into(self) -> Result<Stdio, Self::Error> {
imp::convert_to_stdio(self.inner)
}
}
impl TryInto<Stdio> for ChildStdout {
type Error = io::Error;
fn try_into(self) -> Result<Stdio, Self::Error> {
imp::convert_to_stdio(self.inner)
}
}
impl TryInto<Stdio> for ChildStderr {
type Error = io::Error;
fn try_into(self) -> Result<Stdio, Self::Error> {
imp::convert_to_stdio(self.inner)
}
}
#[cfg(unix)]
#[cfg_attr(docsrs, doc(cfg(unix)))]
mod sys {
use std::{
io,
os::unix::io::{AsFd, AsRawFd, BorrowedFd, OwnedFd, RawFd},
};
use super::{ChildStderr, ChildStdin, ChildStdout};
macro_rules! impl_traits {
($type:ty) => {
impl $type {
/// Convert into [`OwnedFd`].
pub fn into_owned_fd(self) -> io::Result<OwnedFd> {
self.inner.into_owned_fd()
}
}
impl AsRawFd for $type {
fn as_raw_fd(&self) -> RawFd {
self.inner.as_raw_fd()
}
}
impl AsFd for $type {
fn as_fd(&self) -> BorrowedFd<'_> {
unsafe { BorrowedFd::borrow_raw(self.as_raw_fd()) }
}
}
};
}
impl_traits!(ChildStdin);
impl_traits!(ChildStdout);
impl_traits!(ChildStderr);
}
#[cfg(any(windows, docsrs))]
#[cfg_attr(docsrs, doc(cfg(windows)))]
mod windows {
use super::*;
use crate::os::windows::io::{AsHandle, AsRawHandle, BorrowedHandle, OwnedHandle, RawHandle};
#[cfg(not(docsrs))]
macro_rules! impl_traits {
($type:ty) => {
impl $type {
/// Convert into [`OwnedHandle`].
pub fn into_owned_handle(self) -> io::Result<OwnedHandle> {
self.inner.into_owned_handle()
}
}
impl AsRawHandle for $type {
fn as_raw_handle(&self) -> RawHandle {
self.inner.as_raw_handle()
}
}
impl AsHandle for $type {
fn as_handle(&self) -> BorrowedHandle<'_> {
unsafe { BorrowedHandle::borrow_raw(self.as_raw_handle()) }
}
}
};
}
#[cfg(docsrs)]
macro_rules! impl_traits {
($type:ty) => {
impl $type {
/// Convert into [`OwnedHandle`].
pub fn into_owned_handle(self) -> io::Result<OwnedHandle> {
todo!("For doc generation only")
}
}
impl AsRawHandle for $type {
fn as_raw_handle(&self) -> RawHandle {
todo!("For doc generation only")
}
}
impl AsHandle for $type {
fn as_handle(&self) -> BorrowedHandle<'_> {
todo!("For doc generation only")
}
}
};
}
impl_traits!(ChildStdin);
impl_traits!(ChildStdout);
impl_traits!(ChildStderr);
}
#[cfg(all(test, not(loom)))]
mod test {
use super::kill::Kill;
use super::ChildDropGuard;
use futures::future::FutureExt;
use std::future::Future;
use std::io;
use std::pin::Pin;
use std::task::{Context, Poll};
struct Mock {
num_kills: usize,
num_polls: usize,
poll_result: Poll<Result<(), ()>>,
}
impl Mock {
fn new() -> Self {
Self::with_result(Poll::Pending)
}
fn with_result(result: Poll<Result<(), ()>>) -> Self {
Self {
num_kills: 0,
num_polls: 0,
poll_result: result,
}
}
}
impl Kill for Mock {
fn kill(&mut self) -> io::Result<()> {
self.num_kills += 1;
Ok(())
}
}
impl Future for Mock {
type Output = Result<(), ()>;
fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Self::Output> {
let inner = Pin::get_mut(self);
inner.num_polls += 1;
inner.poll_result
}
}
#[test]
fn kills_on_drop_if_specified() {
let mut mock = Mock::new();
{
let guard = ChildDropGuard {
inner: &mut mock,
kill_on_drop: true,
};
drop(guard);
}
assert_eq!(1, mock.num_kills);
assert_eq!(0, mock.num_polls);
}
#[test]
fn no_kill_on_drop_by_default() {
let mut mock = Mock::new();
{
let guard = ChildDropGuard {
inner: &mut mock,
kill_on_drop: false,
};
drop(guard);
}
assert_eq!(0, mock.num_kills);
assert_eq!(0, mock.num_polls);
}
#[test]
fn no_kill_if_already_killed() {
let mut mock = Mock::new();
{
let mut guard = ChildDropGuard {
inner: &mut mock,
kill_on_drop: true,
};
let _ = guard.kill();
drop(guard);
}
assert_eq!(1, mock.num_kills);
assert_eq!(0, mock.num_polls);
}
#[test]
fn no_kill_if_reaped() {
let mut mock_pending = Mock::with_result(Poll::Pending);
let mut mock_reaped = Mock::with_result(Poll::Ready(Ok(())));
let mut mock_err = Mock::with_result(Poll::Ready(Err(())));
let waker = futures::task::noop_waker();
let mut context = Context::from_waker(&waker);
{
let mut guard = ChildDropGuard {
inner: &mut mock_pending,
kill_on_drop: true,
};
let _ = guard.poll_unpin(&mut context);
let mut guard = ChildDropGuard {
inner: &mut mock_reaped,
kill_on_drop: true,
};
let _ = guard.poll_unpin(&mut context);
let mut guard = ChildDropGuard {
inner: &mut mock_err,
kill_on_drop: true,
};
let _ = guard.poll_unpin(&mut context);
}
assert_eq!(1, mock_pending.num_kills);
assert_eq!(1, mock_pending.num_polls);
assert_eq!(0, mock_reaped.num_kills);
assert_eq!(1, mock_reaped.num_polls);
assert_eq!(1, mock_err.num_kills);
assert_eq!(1, mock_err.num_polls);
}
}