nalgebra/base/properties.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
// Matrix properties checks.
use approx::RelativeEq;
use num::{One, Zero};
use simba::scalar::{ClosedAdd, ClosedMul, ComplexField, RealField};
use crate::base::allocator::Allocator;
use crate::base::dimension::{Dim, DimMin};
use crate::base::storage::Storage;
use crate::base::{DefaultAllocator, Matrix, SquareMatrix};
use crate::RawStorage;
impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
/// The total number of elements of this matrix.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Matrix3x4;
/// let mat = Matrix3x4::<f32>::zeros();
/// assert_eq!(mat.len(), 12);
/// ```
#[inline]
#[must_use]
pub fn len(&self) -> usize {
let (nrows, ncols) = self.shape();
nrows * ncols
}
/// Returns true if the matrix contains no elements.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Matrix3x4;
/// let mat = Matrix3x4::<f32>::zeros();
/// assert!(!mat.is_empty());
/// ```
#[inline]
#[must_use]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Indicates if this is a square matrix.
#[inline]
#[must_use]
pub fn is_square(&self) -> bool {
let (nrows, ncols) = self.shape();
nrows == ncols
}
// TODO: RelativeEq prevents us from using those methods on integer matrices…
/// Indicated if this is the identity matrix within a relative error of `eps`.
///
/// If the matrix is diagonal, this checks that diagonal elements (i.e. at coordinates `(i, i)`
/// for i from `0` to `min(R, C)`) are equal one; and that all other elements are zero.
#[inline]
#[must_use]
pub fn is_identity(&self, eps: T::Epsilon) -> bool
where
T: Zero + One + RelativeEq,
T::Epsilon: Clone,
{
let (nrows, ncols) = self.shape();
for j in 0..ncols {
for i in 0..nrows {
let el = unsafe { self.get_unchecked((i, j)) };
if (i == j && !relative_eq!(*el, T::one(), epsilon = eps.clone()))
|| (i != j && !relative_eq!(*el, T::zero(), epsilon = eps.clone()))
{
return false;
}
}
}
true
}
}
impl<T: ComplexField, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
/// Checks that `Mᵀ × M = Id`.
///
/// In this definition `Id` is approximately equal to the identity matrix with a relative error
/// equal to `eps`.
#[inline]
#[must_use]
pub fn is_orthogonal(&self, eps: T::Epsilon) -> bool
where
T: Zero + One + ClosedAdd + ClosedMul + RelativeEq,
S: Storage<T, R, C>,
T::Epsilon: Clone,
DefaultAllocator: Allocator<T, R, C> + Allocator<T, C, C>,
{
(self.ad_mul(self)).is_identity(eps)
}
}
impl<T: RealField, D: Dim, S: Storage<T, D, D>> SquareMatrix<T, D, S>
where
DefaultAllocator: Allocator<T, D, D>,
{
/// Checks that this matrix is orthogonal and has a determinant equal to 1.
#[inline]
#[must_use]
pub fn is_special_orthogonal(&self, eps: T) -> bool
where
D: DimMin<D, Output = D>,
DefaultAllocator: Allocator<(usize, usize), D>,
{
self.is_square() && self.is_orthogonal(eps) && self.determinant() > T::zero()
}
/// Returns `true` if this matrix is invertible.
#[inline]
#[must_use]
pub fn is_invertible(&self) -> bool {
// TODO: improve this?
self.clone_owned().try_inverse().is_some()
}
}