ncollide3d/query/contact/contact_manifold.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
use crate::math::Point;
use crate::query::ContactPreprocessor;
use crate::query::{Contact, ContactKinematic, TrackedContact};
use crate::shape::FeatureId;
use na::{self, RealField};
use slab::Slab;
use std::collections::{hash_map::Entry, HashMap};
/// The technique used for contact tracking.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ContactTrackingMode<N: RealField + Copy> {
/// Contact tracking using features.
/// Two contacts are considered the same if they are on the same features.
FeatureBased,
/// Contact tracking using distances.
/// Two contacts are considered the same if they are closer than the given threshold.
DistanceBased(N),
}
#[derive(Clone, Debug)]
enum ContactCache<N: RealField + Copy> {
FeatureBased(HashMap<(FeatureId, FeatureId), usize>),
DistanceBased(Vec<(Point<N>, usize)>, N),
}
/// A contact manifold.
///
/// A contact manifold is a set of contacts between two shapes.
/// If the shapes are convex, then the convex hull of those contacts are often interpreted as surface.
/// This structure is responsible for matching new contacts with old ones in order to perform an
/// approximate tracking of the contact points.
#[derive(Clone, Debug)]
pub struct ContactManifold<N: RealField + Copy> {
ncontacts: usize,
persistence: usize,
deepest: usize,
contacts: Slab<(TrackedContact<N>, usize)>,
cache: ContactCache<N>,
}
impl<N: RealField + Copy> ContactManifold<N> {
/// Initializes a contact manifold without any contact.
///
/// The default contact tracking mode is set to `ContactTrackingMode::DistanceBased(0.02)`.
pub fn new() -> Self {
ContactManifold {
ncontacts: 0,
deepest: 0,
persistence: 1,
contacts: Slab::new(),
cache: ContactCache::DistanceBased(Vec::new(), na::convert(0.02)),
}
}
/// The number of contacts contained by this manifold.
pub fn len(&self) -> usize {
self.ncontacts
}
/// All the contact tracked by this manifold.
pub fn contacts(&self) -> impl Iterator<Item = &TrackedContact<N>> {
let persistence = self.persistence;
self.contacts
.iter()
.filter_map(move |(_, c)| if c.1 == persistence { Some(&c.0) } else { None })
}
/// Mutable reference to all the contact tracked by this manifold.
pub fn contacts_mut(&mut self) -> impl Iterator<Item = &mut TrackedContact<N>> {
let persistence = self.persistence;
self.contacts.iter_mut().filter_map(move |(_, c)| {
if c.1 == persistence {
Some(&mut c.0)
} else {
None
}
})
}
/// The contact of this manifold with the deepest penetration depth.
pub fn deepest_contact(&self) -> Option<&TrackedContact<N>> {
if self.len() != 0 {
Some(&self.contacts[self.deepest].0)
} else {
None
}
}
/// Empty the manifold as well as its cache.
pub fn clear(&mut self) {
match &mut self.cache {
ContactCache::FeatureBased(h) => h.clear(),
ContactCache::DistanceBased(v, _) => v.clear(),
}
self.contacts.clear();
self.ncontacts = 0;
}
/// Gets the technique currently used for tracking contacts.
pub fn tracking_mode(&self) -> ContactTrackingMode<N> {
match self.cache {
ContactCache::FeatureBased(_) => ContactTrackingMode::FeatureBased,
ContactCache::DistanceBased(_, threshold) => {
ContactTrackingMode::DistanceBased(threshold)
}
}
}
/// Sets the technique used for tracking contacts.
///
/// If the selected method is different from the current one,
/// the current contact cache is cleared.
pub fn set_tracking_mode(&mut self, mode: ContactTrackingMode<N>) {
match mode {
ContactTrackingMode::FeatureBased => {
if let ContactCache::FeatureBased(_) = self.cache {
// Nothing to do.
} else {
self.cache = ContactCache::FeatureBased(HashMap::new())
}
}
ContactTrackingMode::DistanceBased(new_threshold) => {
if let ContactCache::DistanceBased(_, threshold) = &mut self.cache {
*threshold = new_threshold;
return;
}
self.cache = ContactCache::DistanceBased(Vec::new(), new_threshold)
}
}
}
/// Save the contacts to a cache and empty the manifold.
pub fn save_cache_and_clear(&mut self) {
match &mut self.cache {
ContactCache::DistanceBased(cache, _) => {
let ctcts = &self.contacts;
cache.retain(|c| ctcts[c.1].1 != 0);
}
ContactCache::FeatureBased(cache) => {
let ctcts = &self.contacts;
cache.retain(|_k, v| ctcts[*v].1 != 0);
}
}
self.deepest = 0;
self.ncontacts = 0;
self.contacts.retain(|_i, c| {
if c.1 == 0 {
false
} else {
c.1 -= 1;
true
}
});
}
// FIXME: the method taking a preprocessor should be different?
/// Add a new contact to the manifold.
///
/// The manifold will attempt to match this contact with another one
/// previously added and added to the cache by the last call to
/// `save_cache_and_clear`. The matching is done by spacial proximity, i.e.,
/// two contacts that are sufficiently close will be given the same identifier.
pub fn push(
&mut self,
mut contact: Contact<N>,
mut kinematic: ContactKinematic<N>,
tracking_pt: Point<N>,
preprocessor1: Option<&dyn ContactPreprocessor<N>>,
preprocessor2: Option<&dyn ContactPreprocessor<N>>,
) -> bool {
if let Some(pp) = preprocessor1 {
if !pp.process_contact(&mut contact, &mut kinematic, true) {
return false;
}
}
if let Some(pp) = preprocessor2 {
if !pp.process_contact(&mut contact, &mut kinematic, false) {
return false;
}
}
let is_deepest =
self.ncontacts == 0 || contact.depth > self.contacts[self.deepest].0.contact.depth;
match &mut self.cache {
ContactCache::DistanceBased(cache, threshold) => {
let mut closest = cache.len();
let mut closest_dist: N = *threshold * *threshold;
for (i, cached) in cache.iter().enumerate() {
let dist = na::distance_squared(&tracking_pt, &cached.0);
if dist < closest_dist {
closest_dist = dist;
closest = i;
}
}
if closest == cache.len() {
let tracked = TrackedContact::new(contact, kinematic);
let i = self.contacts.insert((tracked, self.persistence));
cache.push((tracking_pt, i));
self.ncontacts += 1;
if is_deepest {
self.deepest = i;
}
false
} else {
let contact_i = cache[closest].1;
if is_deepest {
self.deepest = contact_i;
}
let c = &mut self.contacts[contact_i];
if c.1 == self.persistence {
if contact.depth <= c.0.contact.depth {
// Keep the contact already in cache because it is deeper.
return true;
}
} else {
self.ncontacts += 1;
c.1 = self.persistence;
}
c.0.contact = contact;
c.0.kinematic = kinematic;
cache[closest].0 = tracking_pt;
true
}
}
ContactCache::FeatureBased(cache) => {
match cache.entry((kinematic.feature1(), kinematic.feature2())) {
Entry::Vacant(e) => {
let tracked = TrackedContact::new(contact, kinematic);
let i = self.contacts.insert((tracked, self.persistence));
let _ = e.insert(i);
self.ncontacts += 1;
if is_deepest {
self.deepest = i;
}
false
}
Entry::Occupied(e) => {
if is_deepest {
self.deepest = *e.get();
}
let c = &mut self.contacts[*e.get()];
if c.1 == self.persistence {
if contact.depth <= c.0.contact.depth {
// Keep the contact already in cache because it is deeper.
return true;
}
} else {
self.ncontacts += 1;
c.1 = self.persistence;
}
c.0.contact = contact;
c.0.kinematic = kinematic;
true
}
}
}
}
}
}