bindgen/ir/analysis/has_destructor.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
//! Determining which types have destructors
use super::{generate_dependencies, ConstrainResult, MonotoneFramework};
use crate::ir::comp::{CompKind, Field, FieldMethods};
use crate::ir::context::{BindgenContext, ItemId};
use crate::ir::traversal::EdgeKind;
use crate::ir::ty::TypeKind;
use crate::{HashMap, HashSet};
/// An analysis that finds for each IR item whether it has a destructor or not
///
/// We use the monotone function `has destructor`, defined as follows:
///
/// * If T is a type alias, a templated alias, or an indirection to another type,
/// T has a destructor if the type T refers to has a destructor.
/// * If T is a compound type, T has a destructor if we saw a destructor when parsing it,
/// or if it's a struct, T has a destructor if any of its base members has a destructor,
/// or if any of its fields have a destructor.
/// * If T is an instantiation of an abstract template definition, T has
/// a destructor if its template definition has a destructor,
/// or if any of the template arguments has a destructor.
/// * If T is the type of a field, that field has a destructor if it's not a bitfield,
/// and if T has a destructor.
#[derive(Debug, Clone)]
pub struct HasDestructorAnalysis<'ctx> {
ctx: &'ctx BindgenContext,
// The incremental result of this analysis's computation. Everything in this
// set definitely has a destructor.
have_destructor: HashSet<ItemId>,
// Dependencies saying that if a key ItemId has been inserted into the
// `have_destructor` set, then each of the ids in Vec<ItemId> need to be
// considered again.
//
// This is a subset of the natural IR graph with reversed edges, where we
// only include the edges from the IR graph that can affect whether a type
// has a destructor or not.
dependencies: HashMap<ItemId, Vec<ItemId>>,
}
impl<'ctx> HasDestructorAnalysis<'ctx> {
fn consider_edge(kind: EdgeKind) -> bool {
// These are the only edges that can affect whether a type has a
// destructor or not.
matches!(
kind,
EdgeKind::TypeReference |
EdgeKind::BaseMember |
EdgeKind::Field |
EdgeKind::TemplateArgument |
EdgeKind::TemplateDeclaration
)
}
fn insert<Id: Into<ItemId>>(&mut self, id: Id) -> ConstrainResult {
let id = id.into();
let was_not_already_in_set = self.have_destructor.insert(id);
assert!(
was_not_already_in_set,
"We shouldn't try and insert {:?} twice because if it was \
already in the set, `constrain` should have exited early.",
id
);
ConstrainResult::Changed
}
}
impl<'ctx> MonotoneFramework for HasDestructorAnalysis<'ctx> {
type Node = ItemId;
type Extra = &'ctx BindgenContext;
type Output = HashSet<ItemId>;
fn new(ctx: &'ctx BindgenContext) -> Self {
let have_destructor = HashSet::default();
let dependencies = generate_dependencies(ctx, Self::consider_edge);
HasDestructorAnalysis {
ctx,
have_destructor,
dependencies,
}
}
fn initial_worklist(&self) -> Vec<ItemId> {
self.ctx.allowlisted_items().iter().cloned().collect()
}
fn constrain(&mut self, id: ItemId) -> ConstrainResult {
if self.have_destructor.contains(&id) {
// We've already computed that this type has a destructor and that can't
// change.
return ConstrainResult::Same;
}
let item = self.ctx.resolve_item(id);
let ty = match item.as_type() {
None => return ConstrainResult::Same,
Some(ty) => ty,
};
match *ty.kind() {
TypeKind::TemplateAlias(t, _) |
TypeKind::Alias(t) |
TypeKind::ResolvedTypeRef(t) => {
if self.have_destructor.contains(&t.into()) {
self.insert(id)
} else {
ConstrainResult::Same
}
}
TypeKind::Comp(ref info) => {
if info.has_own_destructor() {
return self.insert(id);
}
match info.kind() {
CompKind::Union => ConstrainResult::Same,
CompKind::Struct => {
let base_or_field_destructor =
info.base_members().iter().any(|base| {
self.have_destructor.contains(&base.ty.into())
}) || info.fields().iter().any(
|field| match *field {
Field::DataMember(ref data) => self
.have_destructor
.contains(&data.ty().into()),
Field::Bitfields(_) => false,
},
);
if base_or_field_destructor {
self.insert(id)
} else {
ConstrainResult::Same
}
}
}
}
TypeKind::TemplateInstantiation(ref inst) => {
let definition_or_arg_destructor = self
.have_destructor
.contains(&inst.template_definition().into()) ||
inst.template_arguments().iter().any(|arg| {
self.have_destructor.contains(&arg.into())
});
if definition_or_arg_destructor {
self.insert(id)
} else {
ConstrainResult::Same
}
}
_ => ConstrainResult::Same,
}
}
fn each_depending_on<F>(&self, id: ItemId, mut f: F)
where
F: FnMut(ItemId),
{
if let Some(edges) = self.dependencies.get(&id) {
for item in edges {
trace!("enqueue {:?} into worklist", item);
f(*item);
}
}
}
}
impl<'ctx> From<HasDestructorAnalysis<'ctx>> for HashSet<ItemId> {
fn from(analysis: HasDestructorAnalysis<'ctx>) -> Self {
analysis.have_destructor
}
}