1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
/*!
# nalgebra

**nalgebra** is a linear algebra library written for Rust targeting:

* General-purpose linear algebra (still lacks a lot of features…)
* Real-time computer graphics.
* Real-time computer physics.

## Using **nalgebra**
You will need the last stable build of the [rust compiler](https://www.rust-lang.org)
and the official package manager: [cargo](https://github.com/rust-lang/cargo).

Simply add the following to your `Cargo.toml` file:

```ignore
[dependencies]
// TODO: replace the * by the latest version.
nalgebra = "*"
```


Most useful functionalities of **nalgebra** are grouped in the root module `nalgebra::`.

However, the recommended way to use **nalgebra** is to import types and traits
explicitly, and call free-functions using the `na::` prefix:

```
#[macro_use]
extern crate approx; // For the macro relative_eq!
extern crate nalgebra as na;
use na::{Vector3, Rotation3};

fn main() {
    let axis  = Vector3::x_axis();
    let angle = 1.57;
    let b     = Rotation3::from_axis_angle(&axis, angle);

    relative_eq!(b.axis().unwrap(), axis);
    relative_eq!(b.angle(), angle);
}
```


## Features
**nalgebra** is meant to be a general-purpose, low-dimensional, linear algebra library, with
an optimized set of tools for computer graphics and physics. Those features include:

* A single parametrizable type `Matrix` for vectors, (square or rectangular) matrices, and slices
  with dimensions known either at compile-time (using type-level integers) or at runtime.
* Matrices and vectors with compile-time sizes are statically allocated while dynamic ones are
  allocated on the heap.
* Convenient aliases for low-dimensional matrices and vectors: `Vector1` to `Vector6` and
  `Matrix1x1` to `Matrix6x6`, including rectangular matrices like `Matrix2x5`.
* Points sizes known at compile time, and convenience aliases: `Point1` to `Point6`.
* Translation (seen as a transformation that composes by multiplication): `Translation2`,
  `Translation3`.
* Rotation matrices: `Rotation2`, `Rotation3`.
* Quaternions: `Quaternion`, `UnitQuaternion` (for 3D rotation).
* Unit complex numbers can be used for 2D rotation: `UnitComplex`.
* Algebraic entities with a norm equal to one: `Unit<T>`, e.g., `Unit<Vector3<f32>>`.
* Isometries (translation ⨯ rotation): `Isometry2`, `Isometry3`
* Similarity transformations (translation ⨯ rotation ⨯ uniform scale): `Similarity2`, `Similarity3`.
* Affine transformations stored as a homogeneous matrix: `Affine2`, `Affine3`.
* Projective (i.e. invertible) transformations stored as a homogeneous matrix: `Projective2`,
  `Projective3`.
* General transformations that does not have to be invertible, stored as a homogeneous matrix:
  `Transform2`, `Transform3`.
* 3D projections for computer graphics: `Perspective3`, `Orthographic3`.
* Matrix factorizations: `Cholesky`, `QR`, `LU`, `FullPivLU`, `SVD`, `Schur`, `Hessenberg`, `SymmetricEigen`.
* Insertion and removal of rows of columns of a matrix.
*/

#![deny(
    missing_docs,
    nonstandard_style,
    unused_variables,
    unused_mut,
    unused_parens,
    unused_qualifications,
    unused_results,
    rust_2018_idioms,
    rust_2018_compatibility,
    future_incompatible,
    missing_copy_implementations
)]
#![doc(
    html_favicon_url = "https://nalgebra.org/img/favicon.ico",
    html_root_url = "https://docs.rs/nalgebra/0.25.0"
)]
#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(feature = "rand-no-std")]
extern crate rand_package as rand;

#[cfg(feature = "serde-serialize-no-std")]
#[macro_use]
extern crate serde;

#[macro_use]
extern crate approx;
extern crate num_traits as num;

#[cfg(all(feature = "alloc", not(feature = "std")))]
#[cfg_attr(test, macro_use)]
extern crate alloc;

#[cfg(not(feature = "std"))]
extern crate core as std;

#[cfg(feature = "io")]
extern crate pest;
#[macro_use]
#[cfg(feature = "io")]
extern crate pest_derive;

pub mod base;
#[cfg(feature = "debug")]
pub mod debug;
pub mod geometry;
#[cfg(feature = "io")]
pub mod io;
pub mod linalg;
#[cfg(feature = "proptest-support")]
pub mod proptest;
#[cfg(feature = "sparse")]
pub mod sparse;
mod third_party;

pub use crate::base::*;
pub use crate::geometry::*;
pub use crate::linalg::*;
#[cfg(feature = "sparse")]
pub use crate::sparse::*;
#[cfg(feature = "std")]
#[deprecated(
    note = "The 'core' module is being renamed to 'base' to avoid conflicts with the 'core' crate."
)]
pub use base as core;

#[cfg(feature = "macros")]
pub use nalgebra_macros::{dmatrix, dvector, matrix, point, vector};

use simba::scalar::SupersetOf;
use std::cmp::{self, Ordering, PartialOrd};

use num::{One, Signed, Zero};

use base::allocator::Allocator;
pub use num_complex::Complex;
pub use simba::scalar::{
    ClosedAdd, ClosedDiv, ClosedMul, ClosedSub, ComplexField, Field, RealField,
};
pub use simba::simd::{SimdBool, SimdComplexField, SimdPartialOrd, SimdRealField, SimdValue};

/// Gets the multiplicative identity element.
///
/// # See also:
///
/// * [`origin`](../nalgebra/fn.origin.html)
/// * [`zero`](fn.zero.html)
#[inline]
pub fn one<T: One>() -> T {
    T::one()
}

/// Gets the additive identity element.
///
/// # See also:
///
/// * [`one`](fn.one.html)
/// * [`origin`](../nalgebra/fn.origin.html)
#[inline]
pub fn zero<T: Zero>() -> T {
    T::zero()
}

/*
 *
 * Ordering
 *
 */
// XXX: this is very naive and could probably be optimized for specific types.
// XXX: also, we might just want to use divisions, but assuming `val` is usually not far from `min`
// or `max`, would it still be more efficient?
/// Wraps `val` into the range `[min, max]` using modular arithmetics.
///
/// The range must not be empty.
#[must_use]
#[inline]
pub fn wrap<T>(mut val: T, min: T, max: T) -> T
where
    T: Copy + PartialOrd + ClosedAdd + ClosedSub,
{
    assert!(min < max, "Invalid wrapping bounds.");
    let width = max - min;

    if val < min {
        val += width;

        while val < min {
            val += width
        }
    } else if val > max {
        val -= width;

        while val > max {
            val -= width
        }
    }

    val
}

/// Returns a reference to the input value clamped to the interval `[min, max]`.
///
/// In particular:
///     * If `min < val < max`, this returns `val`.
///     * If `val <= min`, this returns `min`.
///     * If `val >= max`, this returns `max`.
#[must_use]
#[inline]
pub fn clamp<T: PartialOrd>(val: T, min: T, max: T) -> T {
    if val > min {
        if val < max {
            val
        } else {
            max
        }
    } else {
        min
    }
}

/// Same as `cmp::max`.
#[inline]
pub fn max<T: Ord>(a: T, b: T) -> T {
    cmp::max(a, b)
}

/// Same as `cmp::min`.
#[inline]
pub fn min<T: Ord>(a: T, b: T) -> T {
    cmp::min(a, b)
}

/// The absolute value of `a`.
///
/// Deprecated: Use [`Matrix::abs`] or [`RealField::abs`] instead.
#[deprecated(note = "use the inherent method `Matrix::abs` or `RealField::abs` instead")]
#[inline]
pub fn abs<T: Signed>(a: &T) -> T {
    a.abs()
}

/// Returns the infimum of `a` and `b`.
#[deprecated(note = "use the inherent method `Matrix::inf` instead")]
#[inline]
pub fn inf<T, R: Dim, C: Dim>(a: &OMatrix<T, R, C>, b: &OMatrix<T, R, C>) -> OMatrix<T, R, C>
where
    T: Scalar + SimdPartialOrd,
    DefaultAllocator: Allocator<T, R, C>,
{
    a.inf(b)
}

/// Returns the supremum of `a` and `b`.
#[deprecated(note = "use the inherent method `Matrix::sup` instead")]
#[inline]
pub fn sup<T, R: Dim, C: Dim>(a: &OMatrix<T, R, C>, b: &OMatrix<T, R, C>) -> OMatrix<T, R, C>
where
    T: Scalar + SimdPartialOrd,
    DefaultAllocator: Allocator<T, R, C>,
{
    a.sup(b)
}

/// Returns simultaneously the infimum and supremum of `a` and `b`.
#[deprecated(note = "use the inherent method `Matrix::inf_sup` instead")]
#[inline]
pub fn inf_sup<T, R: Dim, C: Dim>(
    a: &OMatrix<T, R, C>,
    b: &OMatrix<T, R, C>,
) -> (OMatrix<T, R, C>, OMatrix<T, R, C>)
where
    T: Scalar + SimdPartialOrd,
    DefaultAllocator: Allocator<T, R, C>,
{
    a.inf_sup(b)
}

/// Compare `a` and `b` using a partial ordering relation.
#[inline]
pub fn partial_cmp<T: PartialOrd>(a: &T, b: &T) -> Option<Ordering> {
    a.partial_cmp(b)
}

/// Returns `true` iff `a` and `b` are comparable and `a < b`.
#[inline]
pub fn partial_lt<T: PartialOrd>(a: &T, b: &T) -> bool {
    a.lt(b)
}

/// Returns `true` iff `a` and `b` are comparable and `a <= b`.
#[inline]
pub fn partial_le<T: PartialOrd>(a: &T, b: &T) -> bool {
    a.le(b)
}

/// Returns `true` iff `a` and `b` are comparable and `a > b`.
#[inline]
pub fn partial_gt<T: PartialOrd>(a: &T, b: &T) -> bool {
    a.gt(b)
}

/// Returns `true` iff `a` and `b` are comparable and `a >= b`.
#[inline]
pub fn partial_ge<T: PartialOrd>(a: &T, b: &T) -> bool {
    a.ge(b)
}

/// Return the minimum of `a` and `b` if they are comparable.
#[inline]
pub fn partial_min<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<&'a T> {
    if let Some(ord) = a.partial_cmp(b) {
        match ord {
            Ordering::Greater => Some(b),
            _ => Some(a),
        }
    } else {
        None
    }
}

/// Return the maximum of `a` and `b` if they are comparable.
#[inline]
pub fn partial_max<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<&'a T> {
    if let Some(ord) = a.partial_cmp(b) {
        match ord {
            Ordering::Less => Some(b),
            _ => Some(a),
        }
    } else {
        None
    }
}

/// Clamp `value` between `min` and `max`. Returns `None` if `value` is not comparable to
/// `min` or `max`.
#[inline]
pub fn partial_clamp<'a, T: PartialOrd>(value: &'a T, min: &'a T, max: &'a T) -> Option<&'a T> {
    if let (Some(cmp_min), Some(cmp_max)) = (value.partial_cmp(min), value.partial_cmp(max)) {
        if cmp_min == Ordering::Less {
            Some(min)
        } else if cmp_max == Ordering::Greater {
            Some(max)
        } else {
            Some(value)
        }
    } else {
        None
    }
}

/// Sorts two values in increasing order using a partial ordering.
#[inline]
pub fn partial_sort2<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<(&'a T, &'a T)> {
    if let Some(ord) = a.partial_cmp(b) {
        match ord {
            Ordering::Less => Some((a, b)),
            _ => Some((b, a)),
        }
    } else {
        None
    }
}

/*
 *
 * Point operations.
 *
 */
/// The center of two points.
///
/// # See also:
///
/// * [distance](fn.distance.html)
/// * [`distance_squared`](fn.distance_squared.html)
#[inline]
pub fn center<T: SimdComplexField, const D: usize>(
    p1: &Point<T, D>,
    p2: &Point<T, D>,
) -> Point<T, D> {
    ((&p1.coords + &p2.coords) * convert::<_, T>(0.5)).into()
}

/// The distance between two points.
///
/// # See also:
///
/// * [center](fn.center.html)
/// * [`distance_squared`](fn.distance_squared.html)
#[inline]
pub fn distance<T: SimdComplexField, const D: usize>(
    p1: &Point<T, D>,
    p2: &Point<T, D>,
) -> T::SimdRealField {
    (&p2.coords - &p1.coords).norm()
}

/// The squared distance between two points.
///
/// # See also:
///
/// * [center](fn.center.html)
/// * [distance](fn.distance.html)
#[inline]
pub fn distance_squared<T: SimdComplexField, const D: usize>(
    p1: &Point<T, D>,
    p2: &Point<T, D>,
) -> T::SimdRealField {
    (&p2.coords - &p1.coords).norm_squared()
}

/*
 * Cast
 */
/// Converts an object from one type to an equivalent or more general one.
///
/// See also [`try_convert`](fn.try_convert.html) for conversion to more specific types.
///
/// # See also:
///
/// * [`convert_ref`](fn.convert_ref.html)
/// * [`convert_ref_unchecked`](fn.convert_ref_unchecked.html)
/// * [`is_convertible`](../nalgebra/fn.is_convertible.html)
/// * [`try_convert`](fn.try_convert.html)
/// * [`try_convert_ref`](fn.try_convert_ref.html)
#[inline]
pub fn convert<From, To: SupersetOf<From>>(t: From) -> To {
    To::from_subset(&t)
}

/// Attempts to convert an object to a more specific one.
///
/// See also [`convert`](fn.convert.html) for conversion to more general types.
///
/// # See also:
///
/// * [convert](fn.convert.html)
/// * [`convert_ref`](fn.convert_ref.html)
/// * [`convert_ref_unchecked`](fn.convert_ref_unchecked.html)
/// * [`is_convertible`](../nalgebra/fn.is_convertible.html)
/// * [`try_convert_ref`](fn.try_convert_ref.html)
#[inline]
pub fn try_convert<From: SupersetOf<To>, To>(t: From) -> Option<To> {
    t.to_subset()
}

/// Indicates if [`try_convert`](fn.try_convert.html) will succeed without
/// actually performing the conversion.
///
/// # See also:
///
/// * [convert](fn.convert.html)
/// * [`convert_ref`](fn.convert_ref.html)
/// * [`convert_ref_unchecked`](fn.convert_ref_unchecked.html)
/// * [`try_convert`](fn.try_convert.html)
/// * [`try_convert_ref`](fn.try_convert_ref.html)
#[inline]
pub fn is_convertible<From: SupersetOf<To>, To>(t: &From) -> bool {
    t.is_in_subset()
}

/// Use with care! Same as [`try_convert`](fn.try_convert.html) but
/// without any property checks.
///
/// # See also:
///
/// * [convert](fn.convert.html)
/// * [`convert_ref`](fn.convert_ref.html)
/// * [`convert_ref_unchecked`](fn.convert_ref_unchecked.html)
/// * [`is_convertible`](../nalgebra/fn.is_convertible.html)
/// * [`try_convert`](fn.try_convert.html)
/// * [`try_convert_ref`](fn.try_convert_ref.html)
#[inline]
pub fn convert_unchecked<From: SupersetOf<To>, To>(t: From) -> To {
    t.to_subset_unchecked()
}

/// Converts an object from one type to an equivalent or more general one.
///
/// # See also:
///
/// * [convert](fn.convert.html)
/// * [`convert_ref_unchecked`](fn.convert_ref_unchecked.html)
/// * [`is_convertible`](../nalgebra/fn.is_convertible.html)
/// * [`try_convert`](fn.try_convert.html)
/// * [`try_convert_ref`](fn.try_convert_ref.html)
#[inline]
pub fn convert_ref<From, To: SupersetOf<From>>(t: &From) -> To {
    To::from_subset(t)
}

/// Attempts to convert an object to a more specific one.
///
/// # See also:
///
/// * [convert](fn.convert.html)
/// * [`convert_ref`](fn.convert_ref.html)
/// * [`convert_ref_unchecked`](fn.convert_ref_unchecked.html)
/// * [`is_convertible`](../nalgebra/fn.is_convertible.html)
/// * [`try_convert`](fn.try_convert.html)
#[inline]
pub fn try_convert_ref<From: SupersetOf<To>, To>(t: &From) -> Option<To> {
    t.to_subset()
}

/// Use with care! Same as [`try_convert`](fn.try_convert.html) but
/// without any property checks.
///
/// # See also:
///
/// * [convert](fn.convert.html)
/// * [`convert_ref`](fn.convert_ref.html)
/// * [`is_convertible`](../nalgebra/fn.is_convertible.html)
/// * [`try_convert`](fn.try_convert.html)
/// * [`try_convert_ref`](fn.try_convert_ref.html)
#[inline]
pub fn convert_ref_unchecked<From: SupersetOf<To>, To>(t: &From) -> To {
    t.to_subset_unchecked()
}