nalgebra/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/*!
# nalgebra
**nalgebra** is a linear algebra library written for Rust targeting:
* General-purpose linear algebra (still lacks a lot of features…)
* Real-time computer graphics.
* Real-time computer physics.
## Using **nalgebra**
You will need the last stable build of the [rust compiler](https://www.rust-lang.org)
and the official package manager: [cargo](https://github.com/rust-lang/cargo).
Simply add the following to your `Cargo.toml` file:
```ignore
[dependencies]
// TODO: replace the * by the latest version.
nalgebra = "*"
```
Most useful functionalities of **nalgebra** are grouped in the root module `nalgebra::`.
However, the recommended way to use **nalgebra** is to import types and traits
explicitly, and call free-functions using the `na::` prefix:
```
#[macro_use]
extern crate approx; // For the macro relative_eq!
extern crate nalgebra as na;
use na::{Vector3, Rotation3};
fn main() {
let axis = Vector3::x_axis();
let angle = 1.57;
let b = Rotation3::from_axis_angle(&axis, angle);
relative_eq!(b.axis().unwrap(), axis);
relative_eq!(b.angle(), angle);
}
```
## Features
**nalgebra** is meant to be a general-purpose, low-dimensional, linear algebra library, with
an optimized set of tools for computer graphics and physics. Those features include:
* A single parametrizable type `Matrix` for vectors, (square or rectangular) matrices, and slices
with dimensions known either at compile-time (using type-level integers) or at runtime.
* Matrices and vectors with compile-time sizes are statically allocated while dynamic ones are
allocated on the heap.
* Convenient aliases for low-dimensional matrices and vectors: `Vector1` to `Vector6` and
`Matrix1x1` to `Matrix6x6`, including rectangular matrices like `Matrix2x5`.
* Points sizes known at compile time, and convenience aliases: `Point1` to `Point6`.
* Translation (seen as a transformation that composes by multiplication): `Translation2`,
`Translation3`.
* Rotation matrices: `Rotation2`, `Rotation3`.
* Quaternions: `Quaternion`, `UnitQuaternion` (for 3D rotation).
* Unit complex numbers can be used for 2D rotation: `UnitComplex`.
* Algebraic entities with a norm equal to one: `Unit<T>`, e.g., `Unit<Vector3<f32>>`.
* Isometries (translation ⨯ rotation): `Isometry2`, `Isometry3`
* Similarity transformations (translation ⨯ rotation ⨯ uniform scale): `Similarity2`, `Similarity3`.
* Affine transformations stored as a homogeneous matrix: `Affine2`, `Affine3`.
* Projective (i.e. invertible) transformations stored as a homogeneous matrix: `Projective2`,
`Projective3`.
* General transformations that does not have to be invertible, stored as a homogeneous matrix:
`Transform2`, `Transform3`.
* 3D projections for computer graphics: `Perspective3`, `Orthographic3`.
* Matrix factorizations: `Cholesky`, `QR`, `LU`, `FullPivLU`, `SVD`, `Schur`, `Hessenberg`, `SymmetricEigen`.
* Insertion and removal of rows of columns of a matrix.
*/
#![deny(
missing_docs,
nonstandard_style,
unused_variables,
unused_mut,
unused_parens,
unused_qualifications,
unused_results,
rust_2018_idioms,
rust_2018_compatibility,
future_incompatible,
missing_copy_implementations
)]
#![doc(
html_favicon_url = "https://nalgebra.org/img/favicon.ico",
html_root_url = "https://docs.rs/nalgebra/0.25.0"
)]
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(feature = "rand-no-std")]
extern crate rand_package as rand;
#[cfg(feature = "serde-serialize-no-std")]
#[macro_use]
extern crate serde;
#[macro_use]
extern crate approx;
extern crate num_traits as num;
#[cfg(all(feature = "alloc", not(feature = "std")))]
#[cfg_attr(test, macro_use)]
extern crate alloc;
#[cfg(not(feature = "std"))]
extern crate core as std;
#[cfg(feature = "io")]
extern crate pest;
#[macro_use]
#[cfg(feature = "io")]
extern crate pest_derive;
pub mod base;
#[cfg(feature = "debug")]
pub mod debug;
pub mod geometry;
#[cfg(feature = "io")]
pub mod io;
pub mod linalg;
#[cfg(feature = "proptest-support")]
pub mod proptest;
#[cfg(feature = "sparse")]
pub mod sparse;
mod third_party;
pub use crate::base::*;
pub use crate::geometry::*;
pub use crate::linalg::*;
#[cfg(feature = "sparse")]
pub use crate::sparse::*;
#[cfg(feature = "std")]
#[deprecated(
note = "The 'core' module is being renamed to 'base' to avoid conflicts with the 'core' crate."
)]
pub use base as core;
#[cfg(feature = "macros")]
pub use nalgebra_macros::{dmatrix, dvector, matrix, point, vector};
use simba::scalar::SupersetOf;
use std::cmp::{self, Ordering, PartialOrd};
use num::{One, Signed, Zero};
use base::allocator::Allocator;
pub use num_complex::Complex;
pub use simba::scalar::{
ClosedAdd, ClosedDiv, ClosedMul, ClosedSub, ComplexField, Field, RealField,
};
pub use simba::simd::{SimdBool, SimdComplexField, SimdPartialOrd, SimdRealField, SimdValue};
/// Gets the multiplicative identity element.
///
/// # See also:
///
/// * [`origin`](../nalgebra/fn.origin.html)
/// * [`zero`](fn.zero.html)
#[inline]
pub fn one<T: One>() -> T {
T::one()
}
/// Gets the additive identity element.
///
/// # See also:
///
/// * [`one`](fn.one.html)
/// * [`origin`](../nalgebra/fn.origin.html)
#[inline]
pub fn zero<T: Zero>() -> T {
T::zero()
}
/*
*
* Ordering
*
*/
// XXX: this is very naive and could probably be optimized for specific types.
// XXX: also, we might just want to use divisions, but assuming `val` is usually not far from `min`
// or `max`, would it still be more efficient?
/// Wraps `val` into the range `[min, max]` using modular arithmetics.
///
/// The range must not be empty.
#[must_use]
#[inline]
pub fn wrap<T>(mut val: T, min: T, max: T) -> T
where
T: Copy + PartialOrd + ClosedAdd + ClosedSub,
{
assert!(min < max, "Invalid wrapping bounds.");
let width = max - min;
if val < min {
val += width;
while val < min {
val += width
}
} else if val > max {
val -= width;
while val > max {
val -= width
}
}
val
}
/// Returns a reference to the input value clamped to the interval `[min, max]`.
///
/// In particular:
/// * If `min < val < max`, this returns `val`.
/// * If `val <= min`, this returns `min`.
/// * If `val >= max`, this returns `max`.
#[must_use]
#[inline]
pub fn clamp<T: PartialOrd>(val: T, min: T, max: T) -> T {
if val > min {
if val < max {
val
} else {
max
}
} else {
min
}
}
/// Same as `cmp::max`.
#[inline]
pub fn max<T: Ord>(a: T, b: T) -> T {
cmp::max(a, b)
}
/// Same as `cmp::min`.
#[inline]
pub fn min<T: Ord>(a: T, b: T) -> T {
cmp::min(a, b)
}
/// The absolute value of `a`.
///
/// Deprecated: Use [`Matrix::abs`] or [`RealField::abs`] instead.
#[deprecated(note = "use the inherent method `Matrix::abs` or `RealField::abs` instead")]
#[inline]
pub fn abs<T: Signed>(a: &T) -> T {
a.abs()
}
/// Returns the infimum of `a` and `b`.
#[deprecated(note = "use the inherent method `Matrix::inf` instead")]
#[inline]
pub fn inf<T, R: Dim, C: Dim>(a: &OMatrix<T, R, C>, b: &OMatrix<T, R, C>) -> OMatrix<T, R, C>
where
T: Scalar + SimdPartialOrd,
DefaultAllocator: Allocator<T, R, C>,
{
a.inf(b)
}
/// Returns the supremum of `a` and `b`.
#[deprecated(note = "use the inherent method `Matrix::sup` instead")]
#[inline]
pub fn sup<T, R: Dim, C: Dim>(a: &OMatrix<T, R, C>, b: &OMatrix<T, R, C>) -> OMatrix<T, R, C>
where
T: Scalar + SimdPartialOrd,
DefaultAllocator: Allocator<T, R, C>,
{
a.sup(b)
}
/// Returns simultaneously the infimum and supremum of `a` and `b`.
#[deprecated(note = "use the inherent method `Matrix::inf_sup` instead")]
#[inline]
pub fn inf_sup<T, R: Dim, C: Dim>(
a: &OMatrix<T, R, C>,
b: &OMatrix<T, R, C>,
) -> (OMatrix<T, R, C>, OMatrix<T, R, C>)
where
T: Scalar + SimdPartialOrd,
DefaultAllocator: Allocator<T, R, C>,
{
a.inf_sup(b)
}
/// Compare `a` and `b` using a partial ordering relation.
#[inline]
pub fn partial_cmp<T: PartialOrd>(a: &T, b: &T) -> Option<Ordering> {
a.partial_cmp(b)
}
/// Returns `true` iff `a` and `b` are comparable and `a < b`.
#[inline]
pub fn partial_lt<T: PartialOrd>(a: &T, b: &T) -> bool {
a.lt(b)
}
/// Returns `true` iff `a` and `b` are comparable and `a <= b`.
#[inline]
pub fn partial_le<T: PartialOrd>(a: &T, b: &T) -> bool {
a.le(b)
}
/// Returns `true` iff `a` and `b` are comparable and `a > b`.
#[inline]
pub fn partial_gt<T: PartialOrd>(a: &T, b: &T) -> bool {
a.gt(b)
}
/// Returns `true` iff `a` and `b` are comparable and `a >= b`.
#[inline]
pub fn partial_ge<T: PartialOrd>(a: &T, b: &T) -> bool {
a.ge(b)
}
/// Return the minimum of `a` and `b` if they are comparable.
#[inline]
pub fn partial_min<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<&'a T> {
if let Some(ord) = a.partial_cmp(b) {
match ord {
Ordering::Greater => Some(b),
_ => Some(a),
}
} else {
None
}
}
/// Return the maximum of `a` and `b` if they are comparable.
#[inline]
pub fn partial_max<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<&'a T> {
if let Some(ord) = a.partial_cmp(b) {
match ord {
Ordering::Less => Some(b),
_ => Some(a),
}
} else {
None
}
}
/// Clamp `value` between `min` and `max`. Returns `None` if `value` is not comparable to
/// `min` or `max`.
#[inline]
pub fn partial_clamp<'a, T: PartialOrd>(value: &'a T, min: &'a T, max: &'a T) -> Option<&'a T> {
if let (Some(cmp_min), Some(cmp_max)) = (value.partial_cmp(min), value.partial_cmp(max)) {
if cmp_min == Ordering::Less {
Some(min)
} else if cmp_max == Ordering::Greater {
Some(max)
} else {
Some(value)
}
} else {
None
}
}
/// Sorts two values in increasing order using a partial ordering.
#[inline]
pub fn partial_sort2<'a, T: PartialOrd>(a: &'a T, b: &'a T) -> Option<(&'a T, &'a T)> {
if let Some(ord) = a.partial_cmp(b) {
match ord {
Ordering::Less => Some((a, b)),
_ => Some((b, a)),
}
} else {
None
}
}
/*
*
* Point operations.
*
*/
/// The center of two points.
///
/// # See also:
///
/// * [distance](fn.distance.html)
/// * [`distance_squared`](fn.distance_squared.html)
#[inline]
pub fn center<T: SimdComplexField, const D: usize>(
p1: &Point<T, D>,
p2: &Point<T, D>,
) -> Point<T, D> {
((&p1.coords + &p2.coords) * convert::<_, T>(0.5)).into()
}
/// The distance between two points.
///
/// # See also:
///
/// * [center](fn.center.html)
/// * [`distance_squared`](fn.distance_squared.html)
#[inline]
pub fn distance<T: SimdComplexField, const D: usize>(
p1: &Point<T, D>,
p2: &Point<T, D>,
) -> T::SimdRealField {
(&p2.coords - &p1.coords).norm()
}
/// The squared distance between two points.
///
/// # See also:
///
/// * [center](fn.center.html)
/// * [distance](fn.distance.html)
#[inline]
pub fn distance_squared<T: SimdComplexField, const D: usize>(
p1: &Point<T, D>,
p2: &Point<T, D>,
) -> T::SimdRealField {
(&p2.coords - &p1.coords).norm_squared()
}
/*
* Cast
*/
/// Converts an object from one type to an equivalent or more general one.
///
/// See also [`try_convert`](fn.try_convert.html) for conversion to more specific types.
///
/// # See also:
///
/// * [`convert_ref`](fn.convert_ref.html)
/// * [`convert_ref_unchecked`](fn.convert_ref_unchecked.html)
/// * [`is_convertible`](../nalgebra/fn.is_convertible.html)
/// * [`try_convert`](fn.try_convert.html)
/// * [`try_convert_ref`](fn.try_convert_ref.html)
#[inline]
pub fn convert<From, To: SupersetOf<From>>(t: From) -> To {
To::from_subset(&t)
}
/// Attempts to convert an object to a more specific one.
///
/// See also [`convert`](fn.convert.html) for conversion to more general types.
///
/// # See also:
///
/// * [convert](fn.convert.html)
/// * [`convert_ref`](fn.convert_ref.html)
/// * [`convert_ref_unchecked`](fn.convert_ref_unchecked.html)
/// * [`is_convertible`](../nalgebra/fn.is_convertible.html)
/// * [`try_convert_ref`](fn.try_convert_ref.html)
#[inline]
pub fn try_convert<From: SupersetOf<To>, To>(t: From) -> Option<To> {
t.to_subset()
}
/// Indicates if [`try_convert`](fn.try_convert.html) will succeed without
/// actually performing the conversion.
///
/// # See also:
///
/// * [convert](fn.convert.html)
/// * [`convert_ref`](fn.convert_ref.html)
/// * [`convert_ref_unchecked`](fn.convert_ref_unchecked.html)
/// * [`try_convert`](fn.try_convert.html)
/// * [`try_convert_ref`](fn.try_convert_ref.html)
#[inline]
pub fn is_convertible<From: SupersetOf<To>, To>(t: &From) -> bool {
t.is_in_subset()
}
/// Use with care! Same as [`try_convert`](fn.try_convert.html) but
/// without any property checks.
///
/// # See also:
///
/// * [convert](fn.convert.html)
/// * [`convert_ref`](fn.convert_ref.html)
/// * [`convert_ref_unchecked`](fn.convert_ref_unchecked.html)
/// * [`is_convertible`](../nalgebra/fn.is_convertible.html)
/// * [`try_convert`](fn.try_convert.html)
/// * [`try_convert_ref`](fn.try_convert_ref.html)
#[inline]
pub fn convert_unchecked<From: SupersetOf<To>, To>(t: From) -> To {
t.to_subset_unchecked()
}
/// Converts an object from one type to an equivalent or more general one.
///
/// # See also:
///
/// * [convert](fn.convert.html)
/// * [`convert_ref_unchecked`](fn.convert_ref_unchecked.html)
/// * [`is_convertible`](../nalgebra/fn.is_convertible.html)
/// * [`try_convert`](fn.try_convert.html)
/// * [`try_convert_ref`](fn.try_convert_ref.html)
#[inline]
pub fn convert_ref<From, To: SupersetOf<From>>(t: &From) -> To {
To::from_subset(t)
}
/// Attempts to convert an object to a more specific one.
///
/// # See also:
///
/// * [convert](fn.convert.html)
/// * [`convert_ref`](fn.convert_ref.html)
/// * [`convert_ref_unchecked`](fn.convert_ref_unchecked.html)
/// * [`is_convertible`](../nalgebra/fn.is_convertible.html)
/// * [`try_convert`](fn.try_convert.html)
#[inline]
pub fn try_convert_ref<From: SupersetOf<To>, To>(t: &From) -> Option<To> {
t.to_subset()
}
/// Use with care! Same as [`try_convert`](fn.try_convert.html) but
/// without any property checks.
///
/// # See also:
///
/// * [convert](fn.convert.html)
/// * [`convert_ref`](fn.convert_ref.html)
/// * [`is_convertible`](../nalgebra/fn.is_convertible.html)
/// * [`try_convert`](fn.try_convert.html)
/// * [`try_convert_ref`](fn.try_convert_ref.html)
#[inline]
pub fn convert_ref_unchecked<From: SupersetOf<To>, To>(t: &From) -> To {
t.to_subset_unchecked()
}