nalgebra/geometry/
point_construction.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};

use num::{Bounded, One, Zero};
#[cfg(feature = "rand-no-std")]
use rand::{
    distributions::{Distribution, Standard},
    Rng,
};

use crate::base::allocator::Allocator;
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
use crate::base::{DefaultAllocator, Scalar};
use crate::{
    Const, DimName, OPoint, OVector, Point1, Point2, Point3, Point4, Point5, Point6, Vector1,
    Vector2, Vector3, Vector4, Vector5, Vector6,
};
use simba::scalar::{ClosedDiv, SupersetOf};

use crate::geometry::Point;

impl<T: Scalar + Zero, D: DimName> Default for OPoint<T, D>
where
    DefaultAllocator: Allocator<T, D>,
{
    fn default() -> Self {
        Self::origin()
    }
}

/// # Other construction methods
impl<T: Scalar, D: DimName> OPoint<T, D>
where
    DefaultAllocator: Allocator<T, D>,
{
    /// Creates a new point with all coordinates equal to zero.
    ///
    /// # Example
    ///
    /// ```
    /// # use nalgebra::{Point2, Point3};
    /// // This works in any dimension.
    /// // The explicit crate::<f32> type annotation may not always be needed,
    /// // depending on the context of type inference.
    /// let pt = Point2::<f32>::origin();
    /// assert!(pt.x == 0.0 && pt.y == 0.0);
    ///
    /// let pt = Point3::<f32>::origin();
    /// assert!(pt.x == 0.0 && pt.y == 0.0 && pt.z == 0.0);
    /// ```
    #[inline]
    pub fn origin() -> Self
    where
        T: Zero,
    {
        Self::from(OVector::from_element(T::zero()))
    }

    /// Creates a new point from a slice.
    ///
    /// # Example
    ///
    /// ```
    /// # use nalgebra::{Point2, Point3};
    /// let data = [ 1.0, 2.0, 3.0 ];
    ///
    /// let pt = Point2::from_slice(&data[..2]);
    /// assert_eq!(pt, Point2::new(1.0, 2.0));
    ///
    /// let pt = Point3::from_slice(&data);
    /// assert_eq!(pt, Point3::new(1.0, 2.0, 3.0));
    /// ```
    #[inline]
    pub fn from_slice(components: &[T]) -> Self {
        Self::from(OVector::from_row_slice(components))
    }

    /// Creates a new point from its homogeneous vector representation.
    ///
    /// In practice, this builds a D-dimensional points with the same first D component as `v`
    /// divided by the last component of `v`. Returns `None` if this divisor is zero.
    ///
    /// # Example
    ///
    /// ```
    /// # use nalgebra::{Point2, Point3, Vector3, Vector4};
    ///
    /// let coords = Vector4::new(1.0, 2.0, 3.0, 1.0);
    /// let pt = Point3::from_homogeneous(coords);
    /// assert_eq!(pt, Some(Point3::new(1.0, 2.0, 3.0)));
    ///
    /// // All component of the result will be divided by the
    /// // last component of the vector, here 2.0.
    /// let coords = Vector4::new(1.0, 2.0, 3.0, 2.0);
    /// let pt = Point3::from_homogeneous(coords);
    /// assert_eq!(pt, Some(Point3::new(0.5, 1.0, 1.5)));
    ///
    /// // Fails because the last component is zero.
    /// let coords = Vector4::new(1.0, 2.0, 3.0, 0.0);
    /// let pt = Point3::from_homogeneous(coords);
    /// assert!(pt.is_none());
    ///
    /// // Works also in other dimensions.
    /// let coords = Vector3::new(1.0, 2.0, 1.0);
    /// let pt = Point2::from_homogeneous(coords);
    /// assert_eq!(pt, Some(Point2::new(1.0, 2.0)));
    /// ```
    #[inline]
    pub fn from_homogeneous(v: OVector<T, DimNameSum<D, U1>>) -> Option<Self>
    where
        T: Scalar + Zero + One + ClosedDiv,
        D: DimNameAdd<U1>,
        DefaultAllocator: Allocator<T, DimNameSum<D, U1>>,
    {
        if !v[D::dim()].is_zero() {
            let coords = v.generic_slice((0, 0), (D::name(), Const::<1>)) / v[D::dim()].clone();
            Some(Self::from(coords))
        } else {
            None
        }
    }

    /// Cast the components of `self` to another type.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::Point2;
    /// let pt = Point2::new(1.0f64, 2.0);
    /// let pt2 = pt.cast::<f32>();
    /// assert_eq!(pt2, Point2::new(1.0f32, 2.0));
    /// ```
    pub fn cast<To: Scalar>(self) -> OPoint<To, D>
    where
        OPoint<To, D>: SupersetOf<Self>,
        DefaultAllocator: Allocator<To, D>,
    {
        crate::convert(self)
    }
}

/*
 *
 * Traits that build points.
 *
 */
impl<T: Scalar + Bounded, D: DimName> Bounded for OPoint<T, D>
where
    DefaultAllocator: Allocator<T, D>,
{
    #[inline]
    fn max_value() -> Self {
        Self::from(OVector::max_value())
    }

    #[inline]
    fn min_value() -> Self {
        Self::from(OVector::min_value())
    }
}

#[cfg(feature = "rand-no-std")]
impl<T: Scalar, D: DimName> Distribution<OPoint<T, D>> for Standard
where
    Standard: Distribution<T>,
    DefaultAllocator: Allocator<T, D>,
{
    /// Generate a `Point` where each coordinate is an independent variate from `[0, 1)`.
    #[inline]
    fn sample<'a, G: Rng + ?Sized>(&self, rng: &mut G) -> OPoint<T, D> {
        OPoint::from(rng.gen::<OVector<T, D>>())
    }
}

#[cfg(feature = "arbitrary")]
impl<T: Scalar + Arbitrary + Send, D: DimName> Arbitrary for OPoint<T, D>
where
    <DefaultAllocator as Allocator<T, D>>::Buffer: Send,
    DefaultAllocator: Allocator<T, D>,
{
    #[inline]
    fn arbitrary(g: &mut Gen) -> Self {
        Self::from(OVector::arbitrary(g))
    }
}

/*
 *
 * Small points construction from components.
 *
 */
// NOTE: the impl for Point1 is not with the others so that we
// can add a section with the impl block comment.
/// # Construction from individual components
impl<T: Scalar> Point1<T> {
    /// Initializes this point from its components.
    ///
    /// # Example
    ///
    /// ```
    /// # use nalgebra::Point1;
    /// let p = Point1::new(1.0);
    /// assert_eq!(p.x, 1.0);
    /// ```
    #[inline]
    pub fn new(x: T) -> Self {
        Point {
            coords: Vector1::new(x),
        }
    }
}
macro_rules! componentwise_constructors_impl(
    ($($doc: expr; $Point: ident, $Vector: ident, $($args: ident:$irow: expr),*);* $(;)*) => {$(
        impl<T: Scalar> $Point<T> {
            #[doc = "Initializes this point from its components."]
            #[doc = "# Example\n```"]
            #[doc = $doc]
            #[doc = "```"]
            #[inline]
            pub fn new($($args: T),*) -> Self {
                Point { coords: $Vector::new($($args),*) }
            }
        }
    )*}
);

componentwise_constructors_impl!(
    "# use nalgebra::Point2;\nlet p = Point2::new(1.0, 2.0);\nassert!(p.x == 1.0 && p.y == 2.0);";
    Point2, Vector2, x:0, y:1;
    "# use nalgebra::Point3;\nlet p = Point3::new(1.0, 2.0, 3.0);\nassert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0);";
    Point3, Vector3, x:0, y:1, z:2;
    "# use nalgebra::Point4;\nlet p = Point4::new(1.0, 2.0, 3.0, 4.0);\nassert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0);";
    Point4, Vector4, x:0, y:1, z:2, w:3;
    "# use nalgebra::Point5;\nlet p = Point5::new(1.0, 2.0, 3.0, 4.0, 5.0);\nassert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0);";
    Point5, Vector5, x:0, y:1, z:2, w:3, a:4;
    "# use nalgebra::Point6;\nlet p = Point6::new(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);\nassert!(p.x == 1.0 && p.y == 2.0 && p.z == 3.0 && p.w == 4.0 && p.a == 5.0 && p.b == 6.0);";
    Point6, Vector6, x:0, y:1, z:2, w:3, a:4, b:5;
);