nalgebra/base/matrix.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
use num::{One, Zero};
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use std::any::TypeId;
use std::cmp::Ordering;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::marker::PhantomData;
use std::mem;
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use simba::scalar::{ClosedAdd, ClosedMul, ClosedSub, Field, SupersetOf};
use simba::simd::SimdPartialOrd;
use crate::base::allocator::{Allocator, SameShapeAllocator, SameShapeC, SameShapeR};
use crate::base::constraint::{DimEq, SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
use crate::base::dimension::{Dim, DimAdd, DimSum, IsNotStaticOne, U1, U2, U3};
use crate::base::iter::{
ColumnIter, ColumnIterMut, MatrixIter, MatrixIterMut, RowIter, RowIterMut,
};
use crate::base::storage::{Owned, RawStorage, RawStorageMut, SameShapeStorage};
use crate::base::{Const, DefaultAllocator, OMatrix, OVector, Scalar, Unit};
use crate::{ArrayStorage, SMatrix, SimdComplexField, Storage, UninitMatrix};
use crate::storage::IsContiguous;
use crate::uninit::{Init, InitStatus, Uninit};
#[cfg(any(feature = "std", feature = "alloc"))]
use crate::{DMatrix, DVector, Dynamic, RowDVector, VecStorage};
use std::mem::MaybeUninit;
/// A square matrix.
pub type SquareMatrix<T, D, S> = Matrix<T, D, D, S>;
/// A matrix with one column and `D` rows.
pub type Vector<T, D, S> = Matrix<T, D, U1, S>;
/// A matrix with one row and `D` columns .
pub type RowVector<T, D, S> = Matrix<T, U1, D, S>;
/// The type of the result of a matrix sum.
pub type MatrixSum<T, R1, C1, R2, C2> =
Matrix<T, SameShapeR<R1, R2>, SameShapeC<C1, C2>, SameShapeStorage<T, R1, C1, R2, C2>>;
/// The type of the result of a matrix sum.
pub type VectorSum<T, R1, R2> =
Matrix<T, SameShapeR<R1, R2>, U1, SameShapeStorage<T, R1, U1, R2, U1>>;
/// The type of the result of a matrix cross product.
pub type MatrixCross<T, R1, C1, R2, C2> =
Matrix<T, SameShapeR<R1, R2>, SameShapeC<C1, C2>, SameShapeStorage<T, R1, C1, R2, C2>>;
/// The most generic column-major matrix (and vector) type.
///
/// # Methods summary
/// Because `Matrix` is the most generic types used as a common representation of all matrices and
/// vectors of **nalgebra** this documentation page contains every single matrix/vector-related
/// method. In order to make browsing this page simpler, the next subsections contain direct links
/// to groups of methods related to a specific topic.
///
/// #### Vector and matrix construction
/// - [Constructors of statically-sized vectors or statically-sized matrices](#constructors-of-statically-sized-vectors-or-statically-sized-matrices)
/// (`Vector3`, `Matrix3x6`…)
/// - [Constructors of fully dynamic matrices](#constructors-of-fully-dynamic-matrices) (`DMatrix`)
/// - [Constructors of dynamic vectors and matrices with a dynamic number of rows](#constructors-of-dynamic-vectors-and-matrices-with-a-dynamic-number-of-rows)
/// (`DVector`, `MatrixXx3`…)
/// - [Constructors of matrices with a dynamic number of columns](#constructors-of-matrices-with-a-dynamic-number-of-columns)
/// (`Matrix2xX`…)
/// - [Generic constructors](#generic-constructors)
/// (For code generic wrt. the vectors or matrices dimensions.)
///
/// #### Computer graphics utilities for transformations
/// - [2D transformations as a Matrix3 <span style="float:right;">`new_rotation`…</span>](#2d-transformations-as-a-matrix3)
/// - [3D transformations as a Matrix4 <span style="float:right;">`new_rotation`, `new_perspective`, `look_at_rh`…</span>](#3d-transformations-as-a-matrix4)
/// - [Translation and scaling in any dimension <span style="float:right;">`new_scaling`, `new_translation`…</span>](#translation-and-scaling-in-any-dimension)
/// - [Append/prepend translation and scaling <span style="float:right;">`append_scaling`, `prepend_translation_mut`…</span>](#appendprepend-translation-and-scaling)
/// - [Transformation of vectors and points <span style="float:right;">`transform_vector`, `transform_point`…</span>](#transformation-of-vectors-and-points)
///
/// #### Common math operations
/// - [Componentwise operations <span style="float:right;">`component_mul`, `component_div`, `inf`…</span>](#componentwise-operations)
/// - [Special multiplications <span style="float:right;">`tr_mul`, `ad_mul`, `kronecker`…</span>](#special-multiplications)
/// - [Dot/scalar product <span style="float:right;">`dot`, `dotc`, `tr_dot`…</span>](#dotscalar-product)
/// - [Cross product <span style="float:right;">`cross`, `perp`…</span>](#cross-product)
/// - [Magnitude and norms <span style="float:right;">`norm`, `normalize`, `metric_distance`…</span>](#magnitude-and-norms)
/// - [In-place normalization <span style="float:right;">`normalize_mut`, `try_normalize_mut`…</span>](#in-place-normalization)
/// - [Interpolation <span style="float:right;">`lerp`, `slerp`…</span>](#interpolation)
/// - [BLAS functions <span style="float:right;">`gemv`, `gemm`, `syger`…</span>](#blas-functions)
/// - [Swizzling <span style="float:right;">`xx`, `yxz`…</span>](#swizzling)
/// - [Triangular matrix extraction <span style="float:right;">`upper_triangle`, `lower_triangle`</span>](#triangular-matrix-extraction)
///
/// #### Statistics
/// - [Common operations <span style="float:right;">`row_sum`, `column_mean`, `variance`…</span>](#common-statistics-operations)
/// - [Find the min and max components <span style="float:right;">`min`, `max`, `amin`, `amax`, `camin`, `cmax`…</span>](#find-the-min-and-max-components)
/// - [Find the min and max components (vector-specific methods) <span style="float:right;">`argmin`, `argmax`, `icamin`, `icamax`…</span>](#find-the-min-and-max-components-vector-specific-methods)
///
/// #### Iteration, map, and fold
/// - [Iteration on components, rows, and columns <span style="float:right;">`iter`, `column_iter`…</span>](#iteration-on-components-rows-and-columns)
/// - [Elementwise mapping and folding <span style="float:right;">`map`, `fold`, `zip_map`…</span>](#elementwise-mapping-and-folding)
/// - [Folding or columns and rows <span style="float:right;">`compress_rows`, `compress_columns`…</span>](#folding-on-columns-and-rows)
///
/// #### Vector and matrix slicing
/// - [Creating matrix slices from `&[T]` <span style="float:right;">`from_slice`, `from_slice_with_strides`…</span>](#creating-matrix-slices-from-t)
/// - [Creating mutable matrix slices from `&mut [T]` <span style="float:right;">`from_slice_mut`, `from_slice_with_strides_mut`…</span>](#creating-mutable-matrix-slices-from-mut-t)
/// - [Slicing based on index and length <span style="float:right;">`row`, `columns`, `slice`…</span>](#slicing-based-on-index-and-length)
/// - [Mutable slicing based on index and length <span style="float:right;">`row_mut`, `columns_mut`, `slice_mut`…</span>](#mutable-slicing-based-on-index-and-length)
/// - [Slicing based on ranges <span style="float:right;">`rows_range`, `columns_range`…</span>](#slicing-based-on-ranges)
/// - [Mutable slicing based on ranges <span style="float:right;">`rows_range_mut`, `columns_range_mut`…</span>](#mutable-slicing-based-on-ranges)
///
/// #### In-place modification of a single matrix or vector
/// - [In-place filling <span style="float:right;">`fill`, `fill_diagonal`, `fill_with_identity`…</span>](#in-place-filling)
/// - [In-place swapping <span style="float:right;">`swap`, `swap_columns`…</span>](#in-place-swapping)
/// - [Set rows, columns, and diagonal <span style="float:right;">`set_column`, `set_diagonal`…</span>](#set-rows-columns-and-diagonal)
///
/// #### Vector and matrix size modification
/// - [Rows and columns insertion <span style="float:right;">`insert_row`, `insert_column`…</span>](#rows-and-columns-insertion)
/// - [Rows and columns removal <span style="float:right;">`remove_row`, `remove column`…</span>](#rows-and-columns-removal)
/// - [Rows and columns extraction <span style="float:right;">`select_rows`, `select_columns`…</span>](#rows-and-columns-extraction)
/// - [Resizing and reshaping <span style="float:right;">`resize`, `reshape_generic`…</span>](#resizing-and-reshaping)
/// - [In-place resizing <span style="float:right;">`resize_mut`, `resize_vertically_mut`…</span>](#in-place-resizing)
///
/// #### Matrix decomposition
/// - [Rectangular matrix decomposition <span style="float:right;">`qr`, `lu`, `svd`…</span>](#rectangular-matrix-decomposition)
/// - [Square matrix decomposition <span style="float:right;">`cholesky`, `symmetric_eigen`…</span>](#square-matrix-decomposition)
///
/// #### Vector basis computation
/// - [Basis and orthogonalization <span style="float:right;">`orthonormal_subspace_basis`, `orthonormalize`…</span>](#basis-and-orthogonalization)
///
/// # Type parameters
/// The generic `Matrix` type has four type parameters:
/// - `T`: for the matrix components scalar type.
/// - `R`: for the matrix number of rows.
/// - `C`: for the matrix number of columns.
/// - `S`: for the matrix data storage, i.e., the buffer that actually contains the matrix
/// components.
///
/// The matrix dimensions parameters `R` and `C` can either be:
/// - type-level unsigned integer constants (e.g. `U1`, `U124`) from the `nalgebra::` root module.
/// All numbers from 0 to 127 are defined that way.
/// - type-level unsigned integer constants (e.g. `U1024`, `U10000`) from the `typenum::` crate.
/// Using those, you will not get error messages as nice as for numbers smaller than 128 defined on
/// the `nalgebra::` module.
/// - the special value `Dynamic` from the `nalgebra::` root module. This indicates that the
/// specified dimension is not known at compile-time. Note that this will generally imply that the
/// matrix data storage `S` performs a dynamic allocation and contains extra metadata for the
/// matrix shape.
///
/// Note that mixing `Dynamic` with type-level unsigned integers is allowed. Actually, a
/// dynamically-sized column vector should be represented as a `Matrix<T, Dynamic, U1, S>` (given
/// some concrete types for `T` and a compatible data storage type `S`).
#[repr(C)]
#[derive(Clone, Copy)]
#[cfg_attr(
all(not(target_os = "cuda"), feature = "cuda"),
derive(cust::DeviceCopy)
)]
pub struct Matrix<T, R, C, S> {
/// The data storage that contains all the matrix components. Disappointed?
///
/// Well, if you came here to see how you can access the matrix components,
/// you may be in luck: you can access the individual components of all vectors with compile-time
/// dimensions <= 6 using field notation like this:
/// `vec.x`, `vec.y`, `vec.z`, `vec.w`, `vec.a`, `vec.b`. Reference and assignation work too:
/// ```
/// # use nalgebra::Vector3;
/// let mut vec = Vector3::new(1.0, 2.0, 3.0);
/// vec.x = 10.0;
/// vec.y += 30.0;
/// assert_eq!(vec.x, 10.0);
/// assert_eq!(vec.y + 100.0, 132.0);
/// ```
/// Similarly, for matrices with compile-time dimensions <= 6, you can use field notation
/// like this: `mat.m11`, `mat.m42`, etc. The first digit identifies the row to address
/// and the second digit identifies the column to address. So `mat.m13` identifies the component
/// at the first row and third column (note that the count of rows and columns start at 1 instead
/// of 0 here. This is so we match the mathematical notation).
///
/// For all matrices and vectors, independently from their size, individual components can
/// be accessed and modified using indexing: `vec[20]`, `mat[(20, 19)]`. Here the indexing
/// starts at 0 as you would expect.
pub data: S,
// NOTE: the fact that this field is private is important because
// this prevents the user from constructing a matrix with
// dimensions R, C that don't match the dimension of the
// storage S. Instead they have to use the unsafe function
// from_data_statically_unchecked.
// Note that it would probably make sense to just have
// the type `Matrix<S>`, and have `T, R, C` be associated-types
// of the `RawStorage` trait. However, because we don't have
// specialization, this is not possible because these `T, R, C`
// allows us to desambiguate a lot of configurations.
_phantoms: PhantomData<(T, R, C)>,
}
impl<T, R: Dim, C: Dim, S: fmt::Debug> fmt::Debug for Matrix<T, R, C, S> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
self.data.fmt(formatter)
}
}
impl<T, R, C, S> Default for Matrix<T, R, C, S>
where
T: Scalar,
R: Dim,
C: Dim,
S: Default,
{
fn default() -> Self {
Matrix {
data: Default::default(),
_phantoms: PhantomData,
}
}
}
#[cfg(feature = "serde-serialize-no-std")]
impl<T, R, C, S> Serialize for Matrix<T, R, C, S>
where
T: Scalar,
R: Dim,
C: Dim,
S: Serialize,
{
fn serialize<Ser>(&self, serializer: Ser) -> Result<Ser::Ok, Ser::Error>
where
Ser: Serializer,
{
self.data.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize-no-std")]
impl<'de, T, R, C, S> Deserialize<'de> for Matrix<T, R, C, S>
where
T: Scalar,
R: Dim,
C: Dim,
S: Deserialize<'de>,
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
S::deserialize(deserializer).map(|x| Matrix {
data: x,
_phantoms: PhantomData,
})
}
}
#[cfg(feature = "abomonation-serialize")]
impl<T: Scalar, R: Dim, C: Dim, S: Abomonation> Abomonation for Matrix<T, R, C, S> {
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
self.data.entomb(writer)
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.data.exhume(bytes)
}
fn extent(&self) -> usize {
self.data.extent()
}
}
#[cfg(feature = "compare")]
impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> matrixcompare_core::Matrix<T>
for Matrix<T, R, C, S>
{
fn rows(&self) -> usize {
self.nrows()
}
fn cols(&self) -> usize {
self.ncols()
}
fn access(&self) -> matrixcompare_core::Access<'_, T> {
matrixcompare_core::Access::Dense(self)
}
}
#[cfg(feature = "compare")]
impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> matrixcompare_core::DenseAccess<T>
for Matrix<T, R, C, S>
{
fn fetch_single(&self, row: usize, col: usize) -> T {
self.index((row, col)).clone()
}
}
#[cfg(feature = "bytemuck")]
unsafe impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> bytemuck::Zeroable
for Matrix<T, R, C, S>
where
S: bytemuck::Zeroable,
{
}
#[cfg(feature = "bytemuck")]
unsafe impl<T: Scalar, R: Dim, C: Dim, S: RawStorage<T, R, C>> bytemuck::Pod for Matrix<T, R, C, S>
where
S: bytemuck::Pod,
Self: Copy,
{
}
#[cfg(feature = "rkyv-serialize-no-std")]
mod rkyv_impl {
use super::Matrix;
use core::marker::PhantomData;
use rkyv::{offset_of, project_struct, Archive, Deserialize, Fallible, Serialize};
impl<T: Archive, R: Archive, C: Archive, S: Archive> Archive for Matrix<T, R, C, S> {
type Archived = Matrix<T::Archived, R::Archived, C::Archived, S::Archived>;
type Resolver = S::Resolver;
fn resolve(
&self,
pos: usize,
resolver: Self::Resolver,
out: &mut core::mem::MaybeUninit<Self::Archived>,
) {
self.data.resolve(
pos + offset_of!(Self::Archived, data),
resolver,
project_struct!(out: Self::Archived => data),
);
}
}
impl<T: Archive, R: Archive, C: Archive, S: Serialize<_S>, _S: Fallible + ?Sized> Serialize<_S>
for Matrix<T, R, C, S>
{
fn serialize(&self, serializer: &mut _S) -> Result<Self::Resolver, _S::Error> {
self.data.serialize(serializer)
}
}
impl<T: Archive, R: Archive, C: Archive, S: Archive, D: Fallible + ?Sized>
Deserialize<Matrix<T, R, C, S>, D>
for Matrix<T::Archived, R::Archived, C::Archived, S::Archived>
where
S::Archived: Deserialize<S, D>,
{
fn deserialize(&self, deserializer: &mut D) -> Result<Matrix<T, R, C, S>, D::Error> {
Ok(Matrix {
data: self.data.deserialize(deserializer)?,
_phantoms: PhantomData,
})
}
}
}
impl<T, R, C, S> Matrix<T, R, C, S> {
/// Creates a new matrix with the given data without statically checking that the matrix
/// dimension matches the storage dimension.
#[inline(always)]
pub const unsafe fn from_data_statically_unchecked(data: S) -> Matrix<T, R, C, S> {
Matrix {
data,
_phantoms: PhantomData,
}
}
}
impl<T, const R: usize, const C: usize> SMatrix<T, R, C> {
/// Creates a new statically-allocated matrix from the given [`ArrayStorage`].
///
/// This method exists primarily as a workaround for the fact that `from_data` can not
/// work in `const fn` contexts.
#[inline(always)]
pub const fn from_array_storage(storage: ArrayStorage<T, R, C>) -> Self {
// This is sound because the row and column types are exactly the same as that of the
// storage, so there can be no mismatch
unsafe { Self::from_data_statically_unchecked(storage) }
}
}
// TODO: Consider removing/deprecating `from_vec_storage` once we are able to make
// `from_data` const fn compatible
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T> DMatrix<T> {
/// Creates a new heap-allocated matrix from the given [`VecStorage`].
///
/// This method exists primarily as a workaround for the fact that `from_data` can not
/// work in `const fn` contexts.
pub const fn from_vec_storage(storage: VecStorage<T, Dynamic, Dynamic>) -> Self {
// This is sound because the dimensions of the matrix and the storage are guaranteed
// to be the same
unsafe { Self::from_data_statically_unchecked(storage) }
}
}
// TODO: Consider removing/deprecating `from_vec_storage` once we are able to make
// `from_data` const fn compatible
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T> DVector<T> {
/// Creates a new heap-allocated matrix from the given [`VecStorage`].
///
/// This method exists primarily as a workaround for the fact that `from_data` can not
/// work in `const fn` contexts.
pub const fn from_vec_storage(storage: VecStorage<T, Dynamic, U1>) -> Self {
// This is sound because the dimensions of the matrix and the storage are guaranteed
// to be the same
unsafe { Self::from_data_statically_unchecked(storage) }
}
}
// TODO: Consider removing/deprecating `from_vec_storage` once we are able to make
// `from_data` const fn compatible
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T> RowDVector<T> {
/// Creates a new heap-allocated matrix from the given [`VecStorage`].
///
/// This method exists primarily as a workaround for the fact that `from_data` can not
/// work in `const fn` contexts.
pub const fn from_vec_storage(storage: VecStorage<T, U1, Dynamic>) -> Self {
// This is sound because the dimensions of the matrix and the storage are guaranteed
// to be the same
unsafe { Self::from_data_statically_unchecked(storage) }
}
}
impl<T, R: Dim, C: Dim> UninitMatrix<T, R, C>
where
DefaultAllocator: Allocator<T, R, C>,
{
/// Assumes a matrix's entries to be initialized. This operation should be near zero-cost.
///
/// For the similar method that operates on matrix slices, see [`slice_assume_init`].
///
/// # Safety
/// The user must make sure that every single entry of the buffer has been initialized,
/// or Undefined Behavior will immediately occur.
#[inline(always)]
pub unsafe fn assume_init(self) -> OMatrix<T, R, C> {
OMatrix::from_data(<DefaultAllocator as Allocator<T, R, C>>::assume_init(
self.data,
))
}
}
impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
/// Creates a new matrix with the given data.
#[inline(always)]
pub fn from_data(data: S) -> Self {
unsafe { Self::from_data_statically_unchecked(data) }
}
/// The shape of this matrix returned as the tuple (number of rows, number of columns).
///
/// # Examples:
///
/// ```
/// # use nalgebra::Matrix3x4;
/// let mat = Matrix3x4::<f32>::zeros();
/// assert_eq!(mat.shape(), (3, 4));
#[inline]
#[must_use]
pub fn shape(&self) -> (usize, usize) {
let (nrows, ncols) = self.shape_generic();
(nrows.value(), ncols.value())
}
/// The shape of this matrix wrapped into their representative types (`Const` or `Dynamic`).
#[inline]
#[must_use]
pub fn shape_generic(&self) -> (R, C) {
self.data.shape()
}
/// The number of rows of this matrix.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Matrix3x4;
/// let mat = Matrix3x4::<f32>::zeros();
/// assert_eq!(mat.nrows(), 3);
#[inline]
#[must_use]
pub fn nrows(&self) -> usize {
self.shape().0
}
/// The number of columns of this matrix.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Matrix3x4;
/// let mat = Matrix3x4::<f32>::zeros();
/// assert_eq!(mat.ncols(), 4);
#[inline]
#[must_use]
pub fn ncols(&self) -> usize {
self.shape().1
}
/// The strides (row stride, column stride) of this matrix.
///
/// # Examples:
///
/// ```
/// # use nalgebra::DMatrix;
/// let mat = DMatrix::<f32>::zeros(10, 10);
/// let slice = mat.slice_with_steps((0, 0), (5, 3), (1, 2));
/// // The column strides is the number of steps (here 2) multiplied by the corresponding dimension.
/// assert_eq!(mat.strides(), (1, 10));
#[inline]
#[must_use]
pub fn strides(&self) -> (usize, usize) {
let (srows, scols) = self.data.strides();
(srows.value(), scols.value())
}
/// Computes the row and column coordinates of the i-th element of this matrix seen as a
/// vector.
///
/// # Example
/// ```
/// # use nalgebra::Matrix2;
/// let m = Matrix2::new(1, 2,
/// 3, 4);
/// let i = m.vector_to_matrix_index(3);
/// assert_eq!(i, (1, 1));
/// assert_eq!(m[i], m[3]);
/// ```
#[inline]
#[must_use]
pub fn vector_to_matrix_index(&self, i: usize) -> (usize, usize) {
let (nrows, ncols) = self.shape();
// Two most common uses that should be optimized by the compiler for statically-sized
// matrices.
if nrows == 1 {
(0, i)
} else if ncols == 1 {
(i, 0)
} else {
(i % nrows, i / nrows)
}
}
/// Returns a pointer to the start of the matrix.
///
/// If the matrix is not empty, this pointer is guaranteed to be aligned
/// and non-null.
///
/// # Example
/// ```
/// # use nalgebra::Matrix2;
/// let m = Matrix2::new(1, 2,
/// 3, 4);
/// let ptr = m.as_ptr();
/// assert_eq!(unsafe { *ptr }, m[0]);
/// ```
#[inline]
#[must_use]
pub fn as_ptr(&self) -> *const T {
self.data.ptr()
}
/// Tests whether `self` and `rhs` are equal up to a given epsilon.
///
/// See `relative_eq` from the `RelativeEq` trait for more details.
#[inline]
#[must_use]
pub fn relative_eq<R2, C2, SB>(
&self,
other: &Matrix<T, R2, C2, SB>,
eps: T::Epsilon,
max_relative: T::Epsilon,
) -> bool
where
T: RelativeEq,
R2: Dim,
C2: Dim,
SB: Storage<T, R2, C2>,
T::Epsilon: Clone,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
assert!(self.shape() == other.shape());
self.iter()
.zip(other.iter())
.all(|(a, b)| a.relative_eq(b, eps.clone(), max_relative.clone()))
}
/// Tests whether `self` and `rhs` are exactly equal.
#[inline]
#[must_use]
#[allow(clippy::should_implement_trait)]
pub fn eq<R2, C2, SB>(&self, other: &Matrix<T, R2, C2, SB>) -> bool
where
T: PartialEq,
R2: Dim,
C2: Dim,
SB: RawStorage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
assert!(self.shape() == other.shape());
self.iter().zip(other.iter()).all(|(a, b)| *a == *b)
}
/// Moves this matrix into one that owns its data.
#[inline]
pub fn into_owned(self) -> OMatrix<T, R, C>
where
T: Scalar,
S: Storage<T, R, C>,
DefaultAllocator: Allocator<T, R, C>,
{
Matrix::from_data(self.data.into_owned())
}
// TODO: this could probably benefit from specialization.
// XXX: bad name.
/// Moves this matrix into one that owns its data. The actual type of the result depends on
/// matrix storage combination rules for addition.
#[inline]
pub fn into_owned_sum<R2, C2>(self) -> MatrixSum<T, R, C, R2, C2>
where
T: Scalar,
S: Storage<T, R, C>,
R2: Dim,
C2: Dim,
DefaultAllocator: SameShapeAllocator<T, R, C, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
if TypeId::of::<SameShapeStorage<T, R, C, R2, C2>>() == TypeId::of::<Owned<T, R, C>>() {
// We can just return `self.into_owned()`.
unsafe {
// TODO: check that those copies are optimized away by the compiler.
let owned = self.into_owned();
let res = mem::transmute_copy(&owned);
mem::forget(owned);
res
}
} else {
self.clone_owned_sum()
}
}
/// Clones this matrix to one that owns its data.
#[inline]
#[must_use]
pub fn clone_owned(&self) -> OMatrix<T, R, C>
where
T: Scalar,
S: Storage<T, R, C>,
DefaultAllocator: Allocator<T, R, C>,
{
Matrix::from_data(self.data.clone_owned())
}
/// Clones this matrix into one that owns its data. The actual type of the result depends on
/// matrix storage combination rules for addition.
#[inline]
#[must_use]
pub fn clone_owned_sum<R2, C2>(&self) -> MatrixSum<T, R, C, R2, C2>
where
T: Scalar,
S: Storage<T, R, C>,
R2: Dim,
C2: Dim,
DefaultAllocator: SameShapeAllocator<T, R, C, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
let (nrows, ncols) = self.shape();
let nrows: SameShapeR<R, R2> = Dim::from_usize(nrows);
let ncols: SameShapeC<C, C2> = Dim::from_usize(ncols);
let mut res = Matrix::uninit(nrows, ncols);
unsafe {
// TODO: use copy_from?
for j in 0..res.ncols() {
for i in 0..res.nrows() {
*res.get_unchecked_mut((i, j)) =
MaybeUninit::new(self.get_unchecked((i, j)).clone());
}
}
// SAFETY: the output has been initialized above.
res.assume_init()
}
}
/// Transposes `self` and store the result into `out`.
#[inline]
fn transpose_to_uninit<Status, R2, C2, SB>(
&self,
_status: Status,
out: &mut Matrix<Status::Value, R2, C2, SB>,
) where
Status: InitStatus<T>,
T: Scalar,
R2: Dim,
C2: Dim,
SB: RawStorageMut<Status::Value, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, C2> + SameNumberOfColumns<C, R2>,
{
let (nrows, ncols) = self.shape();
assert!(
(ncols, nrows) == out.shape(),
"Incompatible shape for transposition."
);
// TODO: optimize that.
for i in 0..nrows {
for j in 0..ncols {
// Safety: the indices are in range.
unsafe {
Status::init(
out.get_unchecked_mut((j, i)),
self.get_unchecked((i, j)).clone(),
);
}
}
}
}
/// Transposes `self` and store the result into `out`.
#[inline]
pub fn transpose_to<R2, C2, SB>(&self, out: &mut Matrix<T, R2, C2, SB>)
where
T: Scalar,
R2: Dim,
C2: Dim,
SB: RawStorageMut<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, C2> + SameNumberOfColumns<C, R2>,
{
self.transpose_to_uninit(Init, out)
}
/// Transposes `self`.
#[inline]
#[must_use = "Did you mean to use transpose_mut()?"]
pub fn transpose(&self) -> OMatrix<T, C, R>
where
T: Scalar,
DefaultAllocator: Allocator<T, C, R>,
{
let (nrows, ncols) = self.shape_generic();
let mut res = Matrix::uninit(ncols, nrows);
self.transpose_to_uninit(Uninit, &mut res);
// Safety: res is now fully initialized.
unsafe { res.assume_init() }
}
}
/// # Elementwise mapping and folding
impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
/// Returns a matrix containing the result of `f` applied to each of its entries.
#[inline]
#[must_use]
pub fn map<T2: Scalar, F: FnMut(T) -> T2>(&self, mut f: F) -> OMatrix<T2, R, C>
where
T: Scalar,
DefaultAllocator: Allocator<T2, R, C>,
{
let (nrows, ncols) = self.shape_generic();
let mut res = Matrix::uninit(nrows, ncols);
for j in 0..ncols.value() {
for i in 0..nrows.value() {
// Safety: all indices are in range.
unsafe {
let a = self.data.get_unchecked(i, j).clone();
*res.data.get_unchecked_mut(i, j) = MaybeUninit::new(f(a));
}
}
}
// Safety: res is now fully initialized.
unsafe { res.assume_init() }
}
/// Cast the components of `self` to another type.
///
/// # Example
/// ```
/// # use nalgebra::Vector3;
/// let q = Vector3::new(1.0f64, 2.0, 3.0);
/// let q2 = q.cast::<f32>();
/// assert_eq!(q2, Vector3::new(1.0f32, 2.0, 3.0));
/// ```
pub fn cast<T2: Scalar>(self) -> OMatrix<T2, R, C>
where
T: Scalar,
OMatrix<T2, R, C>: SupersetOf<Self>,
DefaultAllocator: Allocator<T2, R, C>,
{
crate::convert(self)
}
/// Similar to `self.iter().fold(init, f)` except that `init` is replaced by a closure.
///
/// The initialization closure is given the first component of this matrix:
/// - If the matrix has no component (0 rows or 0 columns) then `init_f` is called with `None`
/// and its return value is the value returned by this method.
/// - If the matrix has has least one component, then `init_f` is called with the first component
/// to compute the initial value. Folding then continues on all the remaining components of the matrix.
#[inline]
#[must_use]
pub fn fold_with<T2>(
&self,
init_f: impl FnOnce(Option<&T>) -> T2,
f: impl FnMut(T2, &T) -> T2,
) -> T2
where
T: Scalar,
{
let mut it = self.iter();
let init = init_f(it.next());
it.fold(init, f)
}
/// Returns a matrix containing the result of `f` applied to each of its entries. Unlike `map`,
/// `f` also gets passed the row and column index, i.e. `f(row, col, value)`.
#[inline]
#[must_use]
pub fn map_with_location<T2: Scalar, F: FnMut(usize, usize, T) -> T2>(
&self,
mut f: F,
) -> OMatrix<T2, R, C>
where
T: Scalar,
DefaultAllocator: Allocator<T2, R, C>,
{
let (nrows, ncols) = self.shape_generic();
let mut res = Matrix::uninit(nrows, ncols);
for j in 0..ncols.value() {
for i in 0..nrows.value() {
// Safety: all indices are in range.
unsafe {
let a = self.data.get_unchecked(i, j).clone();
*res.data.get_unchecked_mut(i, j) = MaybeUninit::new(f(i, j, a));
}
}
}
// Safety: res is now fully initialized.
unsafe { res.assume_init() }
}
/// Returns a matrix containing the result of `f` applied to each entries of `self` and
/// `rhs`.
#[inline]
#[must_use]
pub fn zip_map<T2, N3, S2, F>(&self, rhs: &Matrix<T2, R, C, S2>, mut f: F) -> OMatrix<N3, R, C>
where
T: Scalar,
T2: Scalar,
N3: Scalar,
S2: RawStorage<T2, R, C>,
F: FnMut(T, T2) -> N3,
DefaultAllocator: Allocator<N3, R, C>,
{
let (nrows, ncols) = self.shape_generic();
let mut res = Matrix::uninit(nrows, ncols);
assert_eq!(
(nrows.value(), ncols.value()),
rhs.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
for j in 0..ncols.value() {
for i in 0..nrows.value() {
// Safety: all indices are in range.
unsafe {
let a = self.data.get_unchecked(i, j).clone();
let b = rhs.data.get_unchecked(i, j).clone();
*res.data.get_unchecked_mut(i, j) = MaybeUninit::new(f(a, b))
}
}
}
// Safety: res is now fully initialized.
unsafe { res.assume_init() }
}
/// Returns a matrix containing the result of `f` applied to each entries of `self` and
/// `b`, and `c`.
#[inline]
#[must_use]
pub fn zip_zip_map<T2, N3, N4, S2, S3, F>(
&self,
b: &Matrix<T2, R, C, S2>,
c: &Matrix<N3, R, C, S3>,
mut f: F,
) -> OMatrix<N4, R, C>
where
T: Scalar,
T2: Scalar,
N3: Scalar,
N4: Scalar,
S2: RawStorage<T2, R, C>,
S3: RawStorage<N3, R, C>,
F: FnMut(T, T2, N3) -> N4,
DefaultAllocator: Allocator<N4, R, C>,
{
let (nrows, ncols) = self.shape_generic();
let mut res = Matrix::uninit(nrows, ncols);
assert_eq!(
(nrows.value(), ncols.value()),
b.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
assert_eq!(
(nrows.value(), ncols.value()),
c.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
for j in 0..ncols.value() {
for i in 0..nrows.value() {
// Safety: all indices are in range.
unsafe {
let a = self.data.get_unchecked(i, j).clone();
let b = b.data.get_unchecked(i, j).clone();
let c = c.data.get_unchecked(i, j).clone();
*res.data.get_unchecked_mut(i, j) = MaybeUninit::new(f(a, b, c))
}
}
}
// Safety: res is now fully initialized.
unsafe { res.assume_init() }
}
/// Folds a function `f` on each entry of `self`.
#[inline]
#[must_use]
pub fn fold<Acc>(&self, init: Acc, mut f: impl FnMut(Acc, T) -> Acc) -> Acc
where
T: Scalar,
{
let (nrows, ncols) = self.shape_generic();
let mut res = init;
for j in 0..ncols.value() {
for i in 0..nrows.value() {
// Safety: all indices are in range.
unsafe {
let a = self.data.get_unchecked(i, j).clone();
res = f(res, a)
}
}
}
res
}
/// Folds a function `f` on each pairs of entries from `self` and `rhs`.
#[inline]
#[must_use]
pub fn zip_fold<T2, R2, C2, S2, Acc>(
&self,
rhs: &Matrix<T2, R2, C2, S2>,
init: Acc,
mut f: impl FnMut(Acc, T, T2) -> Acc,
) -> Acc
where
T: Scalar,
T2: Scalar,
R2: Dim,
C2: Dim,
S2: RawStorage<T2, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
let (nrows, ncols) = self.shape_generic();
let mut res = init;
assert_eq!(
(nrows.value(), ncols.value()),
rhs.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
for j in 0..ncols.value() {
for i in 0..nrows.value() {
unsafe {
let a = self.data.get_unchecked(i, j).clone();
let b = rhs.data.get_unchecked(i, j).clone();
res = f(res, a, b)
}
}
}
res
}
/// Applies a closure `f` to modify each component of `self`.
#[inline]
pub fn apply<F: FnMut(&mut T)>(&mut self, mut f: F)
where
S: RawStorageMut<T, R, C>,
{
let (nrows, ncols) = self.shape();
for j in 0..ncols {
for i in 0..nrows {
unsafe {
let e = self.data.get_unchecked_mut(i, j);
f(e)
}
}
}
}
/// Replaces each component of `self` by the result of a closure `f` applied on its components
/// joined with the components from `rhs`.
#[inline]
pub fn zip_apply<T2, R2, C2, S2>(
&mut self,
rhs: &Matrix<T2, R2, C2, S2>,
mut f: impl FnMut(&mut T, T2),
) where
S: RawStorageMut<T, R, C>,
T2: Scalar,
R2: Dim,
C2: Dim,
S2: RawStorage<T2, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
let (nrows, ncols) = self.shape();
assert_eq!(
(nrows, ncols),
rhs.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
for j in 0..ncols {
for i in 0..nrows {
unsafe {
let e = self.data.get_unchecked_mut(i, j);
let rhs = rhs.get_unchecked((i, j)).clone();
f(e, rhs)
}
}
}
}
/// Replaces each component of `self` by the result of a closure `f` applied on its components
/// joined with the components from `b` and `c`.
#[inline]
pub fn zip_zip_apply<T2, R2, C2, S2, N3, R3, C3, S3>(
&mut self,
b: &Matrix<T2, R2, C2, S2>,
c: &Matrix<N3, R3, C3, S3>,
mut f: impl FnMut(&mut T, T2, N3),
) where
S: RawStorageMut<T, R, C>,
T2: Scalar,
R2: Dim,
C2: Dim,
S2: RawStorage<T2, R2, C2>,
N3: Scalar,
R3: Dim,
C3: Dim,
S3: RawStorage<N3, R3, C3>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
let (nrows, ncols) = self.shape();
assert_eq!(
(nrows, ncols),
b.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
assert_eq!(
(nrows, ncols),
c.shape(),
"Matrix simultaneous traversal error: dimension mismatch."
);
for j in 0..ncols {
for i in 0..nrows {
unsafe {
let e = self.data.get_unchecked_mut(i, j);
let b = b.get_unchecked((i, j)).clone();
let c = c.get_unchecked((i, j)).clone();
f(e, b, c)
}
}
}
}
}
/// # Iteration on components, rows, and columns
impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
/// Iterates through this matrix coordinates in column-major order.
///
/// # Examples:
///
/// ```
/// # use nalgebra::Matrix2x3;
/// let mat = Matrix2x3::new(11, 12, 13,
/// 21, 22, 23);
/// let mut it = mat.iter();
/// assert_eq!(*it.next().unwrap(), 11);
/// assert_eq!(*it.next().unwrap(), 21);
/// assert_eq!(*it.next().unwrap(), 12);
/// assert_eq!(*it.next().unwrap(), 22);
/// assert_eq!(*it.next().unwrap(), 13);
/// assert_eq!(*it.next().unwrap(), 23);
/// assert!(it.next().is_none());
#[inline]
pub fn iter(&self) -> MatrixIter<'_, T, R, C, S> {
MatrixIter::new(&self.data)
}
/// Iterate through the rows of this matrix.
///
/// # Example
/// ```
/// # use nalgebra::Matrix2x3;
/// let mut a = Matrix2x3::new(1, 2, 3,
/// 4, 5, 6);
/// for (i, row) in a.row_iter().enumerate() {
/// assert_eq!(row, a.row(i))
/// }
/// ```
#[inline]
pub fn row_iter(&self) -> RowIter<'_, T, R, C, S> {
RowIter::new(self)
}
/// Iterate through the columns of this matrix.
/// # Example
/// ```
/// # use nalgebra::Matrix2x3;
/// let mut a = Matrix2x3::new(1, 2, 3,
/// 4, 5, 6);
/// for (i, column) in a.column_iter().enumerate() {
/// assert_eq!(column, a.column(i))
/// }
/// ```
#[inline]
pub fn column_iter(&self) -> ColumnIter<'_, T, R, C, S> {
ColumnIter::new(self)
}
/// Mutably iterates through this matrix coordinates.
#[inline]
pub fn iter_mut(&mut self) -> MatrixIterMut<'_, T, R, C, S>
where
S: RawStorageMut<T, R, C>,
{
MatrixIterMut::new(&mut self.data)
}
/// Mutably iterates through this matrix rows.
///
/// # Example
/// ```
/// # use nalgebra::Matrix2x3;
/// let mut a = Matrix2x3::new(1, 2, 3,
/// 4, 5, 6);
/// for (i, mut row) in a.row_iter_mut().enumerate() {
/// row *= (i + 1) * 10;
/// }
///
/// let expected = Matrix2x3::new(10, 20, 30,
/// 80, 100, 120);
/// assert_eq!(a, expected);
/// ```
#[inline]
pub fn row_iter_mut(&mut self) -> RowIterMut<'_, T, R, C, S>
where
S: RawStorageMut<T, R, C>,
{
RowIterMut::new(self)
}
/// Mutably iterates through this matrix columns.
///
/// # Example
/// ```
/// # use nalgebra::Matrix2x3;
/// let mut a = Matrix2x3::new(1, 2, 3,
/// 4, 5, 6);
/// for (i, mut col) in a.column_iter_mut().enumerate() {
/// col *= (i + 1) * 10;
/// }
///
/// let expected = Matrix2x3::new(10, 40, 90,
/// 40, 100, 180);
/// assert_eq!(a, expected);
/// ```
#[inline]
pub fn column_iter_mut(&mut self) -> ColumnIterMut<'_, T, R, C, S>
where
S: RawStorageMut<T, R, C>,
{
ColumnIterMut::new(self)
}
}
impl<T, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R, C, S> {
/// Returns a mutable pointer to the start of the matrix.
///
/// If the matrix is not empty, this pointer is guaranteed to be aligned
/// and non-null.
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut T {
self.data.ptr_mut()
}
/// Swaps two entries without bound-checking.
#[inline]
pub unsafe fn swap_unchecked(&mut self, row_cols1: (usize, usize), row_cols2: (usize, usize)) {
debug_assert!(row_cols1.0 < self.nrows() && row_cols1.1 < self.ncols());
debug_assert!(row_cols2.0 < self.nrows() && row_cols2.1 < self.ncols());
self.data.swap_unchecked(row_cols1, row_cols2)
}
/// Swaps two entries.
#[inline]
pub fn swap(&mut self, row_cols1: (usize, usize), row_cols2: (usize, usize)) {
let (nrows, ncols) = self.shape();
assert!(
row_cols1.0 < nrows && row_cols1.1 < ncols,
"Matrix elements swap index out of bounds."
);
assert!(
row_cols2.0 < nrows && row_cols2.1 < ncols,
"Matrix elements swap index out of bounds."
);
unsafe { self.swap_unchecked(row_cols1, row_cols2) }
}
/// Fills this matrix with the content of a slice. Both must hold the same number of elements.
///
/// The components of the slice are assumed to be ordered in column-major order.
#[inline]
pub fn copy_from_slice(&mut self, slice: &[T])
where
T: Scalar,
{
let (nrows, ncols) = self.shape();
assert!(
nrows * ncols == slice.len(),
"The slice must contain the same number of elements as the matrix."
);
for j in 0..ncols {
for i in 0..nrows {
unsafe {
*self.get_unchecked_mut((i, j)) = slice.get_unchecked(i + j * nrows).clone();
}
}
}
}
/// Fills this matrix with the content of another one. Both must have the same shape.
#[inline]
pub fn copy_from<R2, C2, SB>(&mut self, other: &Matrix<T, R2, C2, SB>)
where
T: Scalar,
R2: Dim,
C2: Dim,
SB: RawStorage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
assert!(
self.shape() == other.shape(),
"Unable to copy from a matrix with a different shape."
);
for j in 0..self.ncols() {
for i in 0..self.nrows() {
unsafe {
*self.get_unchecked_mut((i, j)) = other.get_unchecked((i, j)).clone();
}
}
}
}
/// Fills this matrix with the content of the transpose another one.
#[inline]
pub fn tr_copy_from<R2, C2, SB>(&mut self, other: &Matrix<T, R2, C2, SB>)
where
T: Scalar,
R2: Dim,
C2: Dim,
SB: RawStorage<T, R2, C2>,
ShapeConstraint: DimEq<R, C2> + SameNumberOfColumns<C, R2>,
{
let (nrows, ncols) = self.shape();
assert!(
(ncols, nrows) == other.shape(),
"Unable to copy from a matrix with incompatible shape."
);
for j in 0..ncols {
for i in 0..nrows {
unsafe {
*self.get_unchecked_mut((i, j)) = other.get_unchecked((j, i)).clone();
}
}
}
}
// TODO: rename `apply` to `apply_mut` and `apply_into` to `apply`?
/// Returns `self` with each of its components replaced by the result of a closure `f` applied on it.
#[inline]
pub fn apply_into<F: FnMut(&mut T)>(mut self, f: F) -> Self {
self.apply(f);
self
}
}
impl<T, D: Dim, S: RawStorage<T, D>> Vector<T, D, S> {
/// Gets a reference to the i-th element of this column vector without bound checking.
#[inline]
#[must_use]
pub unsafe fn vget_unchecked(&self, i: usize) -> &T {
debug_assert!(i < self.nrows(), "Vector index out of bounds.");
let i = i * self.strides().0;
self.data.get_unchecked_linear(i)
}
}
impl<T, D: Dim, S: RawStorageMut<T, D>> Vector<T, D, S> {
/// Gets a mutable reference to the i-th element of this column vector without bound checking.
#[inline]
#[must_use]
pub unsafe fn vget_unchecked_mut(&mut self, i: usize) -> &mut T {
debug_assert!(i < self.nrows(), "Vector index out of bounds.");
let i = i * self.strides().0;
self.data.get_unchecked_linear_mut(i)
}
}
impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C> + IsContiguous> Matrix<T, R, C, S> {
/// Extracts a slice containing the entire matrix entries ordered column-by-columns.
#[inline]
#[must_use]
pub fn as_slice(&self) -> &[T] {
// Safety: this is OK thanks to the IsContiguous trait.
unsafe { self.data.as_slice_unchecked() }
}
}
impl<T, R: Dim, C: Dim, S: RawStorageMut<T, R, C> + IsContiguous> Matrix<T, R, C, S> {
/// Extracts a mutable slice containing the entire matrix entries ordered column-by-columns.
#[inline]
#[must_use]
pub fn as_mut_slice(&mut self) -> &mut [T] {
// Safety: this is OK thanks to the IsContiguous trait.
unsafe { self.data.as_mut_slice_unchecked() }
}
}
impl<T: Scalar, D: Dim, S: RawStorageMut<T, D, D>> Matrix<T, D, D, S> {
/// Transposes the square matrix `self` in-place.
pub fn transpose_mut(&mut self) {
assert!(
self.is_square(),
"Unable to transpose a non-square matrix in-place."
);
let dim = self.shape().0;
for i in 1..dim {
for j in 0..i {
unsafe { self.swap_unchecked((i, j), (j, i)) }
}
}
}
}
impl<T: SimdComplexField, R: Dim, C: Dim, S: RawStorage<T, R, C>> Matrix<T, R, C, S> {
/// Takes the adjoint (aka. conjugate-transpose) of `self` and store the result into `out`.
#[inline]
fn adjoint_to_uninit<Status, R2, C2, SB>(
&self,
_status: Status,
out: &mut Matrix<Status::Value, R2, C2, SB>,
) where
Status: InitStatus<T>,
R2: Dim,
C2: Dim,
SB: RawStorageMut<Status::Value, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, C2> + SameNumberOfColumns<C, R2>,
{
let (nrows, ncols) = self.shape();
assert!(
(ncols, nrows) == out.shape(),
"Incompatible shape for transpose-copy."
);
// TODO: optimize that.
for i in 0..nrows {
for j in 0..ncols {
// Safety: all indices are in range.
unsafe {
Status::init(
out.get_unchecked_mut((j, i)),
self.get_unchecked((i, j)).clone().simd_conjugate(),
);
}
}
}
}
/// Takes the adjoint (aka. conjugate-transpose) of `self` and store the result into `out`.
#[inline]
pub fn adjoint_to<R2, C2, SB>(&self, out: &mut Matrix<T, R2, C2, SB>)
where
R2: Dim,
C2: Dim,
SB: RawStorageMut<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, C2> + SameNumberOfColumns<C, R2>,
{
self.adjoint_to_uninit(Init, out)
}
/// The adjoint (aka. conjugate-transpose) of `self`.
#[inline]
#[must_use = "Did you mean to use adjoint_mut()?"]
pub fn adjoint(&self) -> OMatrix<T, C, R>
where
DefaultAllocator: Allocator<T, C, R>,
{
let (nrows, ncols) = self.shape_generic();
let mut res = Matrix::uninit(ncols, nrows);
self.adjoint_to_uninit(Uninit, &mut res);
// Safety: res is now fully initialized.
unsafe { res.assume_init() }
}
/// Takes the conjugate and transposes `self` and store the result into `out`.
#[deprecated(note = "Renamed `self.adjoint_to(out)`.")]
#[inline]
pub fn conjugate_transpose_to<R2, C2, SB>(&self, out: &mut Matrix<T, R2, C2, SB>)
where
R2: Dim,
C2: Dim,
SB: RawStorageMut<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, C2> + SameNumberOfColumns<C, R2>,
{
self.adjoint_to(out)
}
/// The conjugate transposition of `self`.
#[deprecated(note = "Renamed `self.adjoint()`.")]
#[inline]
pub fn conjugate_transpose(&self) -> OMatrix<T, C, R>
where
DefaultAllocator: Allocator<T, C, R>,
{
self.adjoint()
}
/// The conjugate of `self`.
#[inline]
#[must_use = "Did you mean to use conjugate_mut()?"]
pub fn conjugate(&self) -> OMatrix<T, R, C>
where
DefaultAllocator: Allocator<T, R, C>,
{
self.map(|e| e.simd_conjugate())
}
/// Divides each component of the complex matrix `self` by the given real.
#[inline]
#[must_use = "Did you mean to use unscale_mut()?"]
pub fn unscale(&self, real: T::SimdRealField) -> OMatrix<T, R, C>
where
DefaultAllocator: Allocator<T, R, C>,
{
self.map(|e| e.simd_unscale(real.clone()))
}
/// Multiplies each component of the complex matrix `self` by the given real.
#[inline]
#[must_use = "Did you mean to use scale_mut()?"]
pub fn scale(&self, real: T::SimdRealField) -> OMatrix<T, R, C>
where
DefaultAllocator: Allocator<T, R, C>,
{
self.map(|e| e.simd_scale(real.clone()))
}
}
impl<T: SimdComplexField, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> Matrix<T, R, C, S> {
/// The conjugate of the complex matrix `self` computed in-place.
#[inline]
pub fn conjugate_mut(&mut self) {
self.apply(|e| *e = e.clone().simd_conjugate())
}
/// Divides each component of the complex matrix `self` by the given real.
#[inline]
pub fn unscale_mut(&mut self, real: T::SimdRealField) {
self.apply(|e| *e = e.clone().simd_unscale(real.clone()))
}
/// Multiplies each component of the complex matrix `self` by the given real.
#[inline]
pub fn scale_mut(&mut self, real: T::SimdRealField) {
self.apply(|e| *e = e.clone().simd_scale(real.clone()))
}
}
impl<T: SimdComplexField, D: Dim, S: RawStorageMut<T, D, D>> Matrix<T, D, D, S> {
/// Sets `self` to its adjoint.
#[deprecated(note = "Renamed to `self.adjoint_mut()`.")]
pub fn conjugate_transform_mut(&mut self) {
self.adjoint_mut()
}
/// Sets `self` to its adjoint (aka. conjugate-transpose).
pub fn adjoint_mut(&mut self) {
assert!(
self.is_square(),
"Unable to transpose a non-square matrix in-place."
);
let dim = self.shape().0;
for i in 0..dim {
for j in 0..i {
unsafe {
let ref_ij = self.get_unchecked((i, j)).clone();
let ref_ji = self.get_unchecked((j, i)).clone();
let conj_ij = ref_ij.simd_conjugate();
let conj_ji = ref_ji.simd_conjugate();
*self.get_unchecked_mut((i, j)) = conj_ji;
*self.get_unchecked_mut((j, i)) = conj_ij;
}
}
{
let diag = unsafe { self.get_unchecked_mut((i, i)) };
*diag = diag.clone().simd_conjugate();
}
}
}
}
impl<T: Scalar, D: Dim, S: RawStorage<T, D, D>> SquareMatrix<T, D, S> {
/// The diagonal of this matrix.
#[inline]
#[must_use]
pub fn diagonal(&self) -> OVector<T, D>
where
DefaultAllocator: Allocator<T, D>,
{
self.map_diagonal(|e| e)
}
/// Apply the given function to this matrix's diagonal and returns it.
///
/// This is a more efficient version of `self.diagonal().map(f)` since this
/// allocates only once.
#[must_use]
pub fn map_diagonal<T2: Scalar>(&self, mut f: impl FnMut(T) -> T2) -> OVector<T2, D>
where
DefaultAllocator: Allocator<T2, D>,
{
assert!(
self.is_square(),
"Unable to get the diagonal of a non-square matrix."
);
let dim = self.shape_generic().0;
let mut res = Matrix::uninit(dim, Const::<1>);
for i in 0..dim.value() {
// Safety: all indices are in range.
unsafe {
*res.vget_unchecked_mut(i) =
MaybeUninit::new(f(self.get_unchecked((i, i)).clone()));
}
}
// Safety: res is now fully initialized.
unsafe { res.assume_init() }
}
/// Computes a trace of a square matrix, i.e., the sum of its diagonal elements.
#[inline]
#[must_use]
pub fn trace(&self) -> T
where
T: Scalar + Zero + ClosedAdd,
{
assert!(
self.is_square(),
"Cannot compute the trace of non-square matrix."
);
let dim = self.shape_generic().0;
let mut res = T::zero();
for i in 0..dim.value() {
res += unsafe { self.get_unchecked((i, i)).clone() };
}
res
}
}
impl<T: SimdComplexField, D: Dim, S: Storage<T, D, D>> SquareMatrix<T, D, S> {
/// The symmetric part of `self`, i.e., `0.5 * (self + self.transpose())`.
#[inline]
#[must_use]
pub fn symmetric_part(&self) -> OMatrix<T, D, D>
where
DefaultAllocator: Allocator<T, D, D>,
{
assert!(
self.is_square(),
"Cannot compute the symmetric part of a non-square matrix."
);
let mut tr = self.transpose();
tr += self;
tr *= crate::convert::<_, T>(0.5);
tr
}
/// The hermitian part of `self`, i.e., `0.5 * (self + self.adjoint())`.
#[inline]
#[must_use]
pub fn hermitian_part(&self) -> OMatrix<T, D, D>
where
DefaultAllocator: Allocator<T, D, D>,
{
assert!(
self.is_square(),
"Cannot compute the hermitian part of a non-square matrix."
);
let mut tr = self.adjoint();
tr += self;
tr *= crate::convert::<_, T>(0.5);
tr
}
}
impl<T: Scalar + Zero + One, D: DimAdd<U1> + IsNotStaticOne, S: RawStorage<T, D, D>>
Matrix<T, D, D, S>
{
/// Yields the homogeneous matrix for this matrix, i.e., appending an additional dimension and
/// and setting the diagonal element to `1`.
#[inline]
#[must_use]
pub fn to_homogeneous(&self) -> OMatrix<T, DimSum<D, U1>, DimSum<D, U1>>
where
DefaultAllocator: Allocator<T, DimSum<D, U1>, DimSum<D, U1>>,
{
assert!(
self.is_square(),
"Only square matrices can currently be transformed to homogeneous coordinates."
);
let dim = DimSum::<D, U1>::from_usize(self.nrows() + 1);
let mut res = OMatrix::identity_generic(dim, dim);
res.generic_slice_mut::<D, D>((0, 0), self.shape_generic())
.copy_from(self);
res
}
}
impl<T: Scalar + Zero, D: DimAdd<U1>, S: RawStorage<T, D>> Vector<T, D, S> {
/// Computes the coordinates in projective space of this vector, i.e., appends a `0` to its
/// coordinates.
#[inline]
#[must_use]
pub fn to_homogeneous(&self) -> OVector<T, DimSum<D, U1>>
where
DefaultAllocator: Allocator<T, DimSum<D, U1>>,
{
self.push(T::zero())
}
/// Constructs a vector from coordinates in projective space, i.e., removes a `0` at the end of
/// `self`. Returns `None` if this last component is not zero.
#[inline]
pub fn from_homogeneous<SB>(v: Vector<T, DimSum<D, U1>, SB>) -> Option<OVector<T, D>>
where
SB: RawStorage<T, DimSum<D, U1>>,
DefaultAllocator: Allocator<T, D>,
{
if v[v.len() - 1].is_zero() {
let nrows = D::from_usize(v.len() - 1);
Some(v.generic_slice((0, 0), (nrows, Const::<1>)).into_owned())
} else {
None
}
}
}
impl<T: Scalar, D: DimAdd<U1>, S: RawStorage<T, D>> Vector<T, D, S> {
/// Constructs a new vector of higher dimension by appending `element` to the end of `self`.
#[inline]
#[must_use]
pub fn push(&self, element: T) -> OVector<T, DimSum<D, U1>>
where
DefaultAllocator: Allocator<T, DimSum<D, U1>>,
{
let len = self.len();
let hnrows = DimSum::<D, U1>::from_usize(len + 1);
let mut res = Matrix::uninit(hnrows, Const::<1>);
// This is basically a copy_from except that we warp the copied
// values into MaybeUninit.
res.generic_slice_mut((0, 0), self.shape_generic())
.zip_apply(self, |out, e| *out = MaybeUninit::new(e));
res[(len, 0)] = MaybeUninit::new(element);
// Safety: res has been fully initialized.
unsafe { res.assume_init() }
}
}
impl<T, R: Dim, C: Dim, S> AbsDiffEq for Matrix<T, R, C, S>
where
T: Scalar + AbsDiffEq,
S: RawStorage<T, R, C>,
T::Epsilon: Clone,
{
type Epsilon = T::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.iter()
.zip(other.iter())
.all(|(a, b)| a.abs_diff_eq(b, epsilon.clone()))
}
}
impl<T, R: Dim, C: Dim, S> RelativeEq for Matrix<T, R, C, S>
where
T: Scalar + RelativeEq,
S: Storage<T, R, C>,
T::Epsilon: Clone,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.relative_eq(other, epsilon, max_relative)
}
}
impl<T, R: Dim, C: Dim, S> UlpsEq for Matrix<T, R, C, S>
where
T: Scalar + UlpsEq,
S: RawStorage<T, R, C>,
T::Epsilon: Clone,
{
#[inline]
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
assert!(self.shape() == other.shape());
self.iter()
.zip(other.iter())
.all(|(a, b)| a.ulps_eq(b, epsilon.clone(), max_ulps))
}
}
impl<T, R: Dim, C: Dim, S> PartialOrd for Matrix<T, R, C, S>
where
T: Scalar + PartialOrd,
S: RawStorage<T, R, C>,
{
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
if self.shape() != other.shape() {
return None;
}
if self.nrows() == 0 || self.ncols() == 0 {
return Some(Ordering::Equal);
}
let mut first_ord = unsafe {
self.data
.get_unchecked_linear(0)
.partial_cmp(other.data.get_unchecked_linear(0))
};
if let Some(first_ord) = first_ord.as_mut() {
let mut it = self.iter().zip(other.iter());
let _ = it.next(); // Drop the first elements (we already tested it).
for (left, right) in it {
if let Some(ord) = left.partial_cmp(right) {
match ord {
Ordering::Equal => { /* Does not change anything. */ }
Ordering::Less => {
if *first_ord == Ordering::Greater {
return None;
}
*first_ord = ord
}
Ordering::Greater => {
if *first_ord == Ordering::Less {
return None;
}
*first_ord = ord
}
}
} else {
return None;
}
}
}
first_ord
}
#[inline]
fn lt(&self, right: &Self) -> bool {
assert_eq!(
self.shape(),
right.shape(),
"Matrix comparison error: dimensions mismatch."
);
self.iter().zip(right.iter()).all(|(a, b)| a.lt(b))
}
#[inline]
fn le(&self, right: &Self) -> bool {
assert_eq!(
self.shape(),
right.shape(),
"Matrix comparison error: dimensions mismatch."
);
self.iter().zip(right.iter()).all(|(a, b)| a.le(b))
}
#[inline]
fn gt(&self, right: &Self) -> bool {
assert_eq!(
self.shape(),
right.shape(),
"Matrix comparison error: dimensions mismatch."
);
self.iter().zip(right.iter()).all(|(a, b)| a.gt(b))
}
#[inline]
fn ge(&self, right: &Self) -> bool {
assert_eq!(
self.shape(),
right.shape(),
"Matrix comparison error: dimensions mismatch."
);
self.iter().zip(right.iter()).all(|(a, b)| a.ge(b))
}
}
impl<T, R: Dim, C: Dim, S> Eq for Matrix<T, R, C, S>
where
T: Scalar + Eq,
S: RawStorage<T, R, C>,
{
}
impl<T, R, R2, C, C2, S, S2> PartialEq<Matrix<T, R2, C2, S2>> for Matrix<T, R, C, S>
where
T: Scalar + PartialEq,
C: Dim,
C2: Dim,
R: Dim,
R2: Dim,
S: RawStorage<T, R, C>,
S2: RawStorage<T, R2, C2>,
{
#[inline]
fn eq(&self, right: &Matrix<T, R2, C2, S2>) -> bool {
self.shape() == right.shape() && self.iter().zip(right.iter()).all(|(l, r)| l == r)
}
}
macro_rules! impl_fmt {
($trait: path, $fmt_str_without_precision: expr, $fmt_str_with_precision: expr) => {
impl<T, R: Dim, C: Dim, S> $trait for Matrix<T, R, C, S>
where
T: Scalar + $trait,
S: RawStorage<T, R, C>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
#[cfg(feature = "std")]
fn val_width<T: Scalar + $trait>(val: &T, f: &mut fmt::Formatter<'_>) -> usize {
match f.precision() {
Some(precision) => format!($fmt_str_with_precision, val, precision)
.chars()
.count(),
None => format!($fmt_str_without_precision, val).chars().count(),
}
}
#[cfg(not(feature = "std"))]
fn val_width<T: Scalar + $trait>(_: &T, _: &mut fmt::Formatter<'_>) -> usize {
4
}
let (nrows, ncols) = self.shape();
if nrows == 0 || ncols == 0 {
return write!(f, "[ ]");
}
let mut max_length = 0;
for i in 0..nrows {
for j in 0..ncols {
max_length = crate::max(max_length, val_width(&self[(i, j)], f));
}
}
let max_length_with_space = max_length + 1;
writeln!(f)?;
writeln!(
f,
" ┌ {:>width$} ┐",
"",
width = max_length_with_space * ncols - 1
)?;
for i in 0..nrows {
write!(f, " │")?;
for j in 0..ncols {
let number_length = val_width(&self[(i, j)], f) + 1;
let pad = max_length_with_space - number_length;
write!(f, " {:>thepad$}", "", thepad = pad)?;
match f.precision() {
Some(precision) => {
write!(f, $fmt_str_with_precision, (*self)[(i, j)], precision)?
}
None => write!(f, $fmt_str_without_precision, (*self)[(i, j)])?,
}
}
writeln!(f, " │")?;
}
writeln!(
f,
" └ {:>width$} ┘",
"",
width = max_length_with_space * ncols - 1
)?;
writeln!(f)
}
}
};
}
impl_fmt!(fmt::Display, "{}", "{:.1$}");
impl_fmt!(fmt::LowerExp, "{:e}", "{:.1$e}");
impl_fmt!(fmt::UpperExp, "{:E}", "{:.1$E}");
impl_fmt!(fmt::Octal, "{:o}", "{:1$o}");
impl_fmt!(fmt::LowerHex, "{:x}", "{:1$x}");
impl_fmt!(fmt::UpperHex, "{:X}", "{:1$X}");
impl_fmt!(fmt::Binary, "{:b}", "{:.1$b}");
impl_fmt!(fmt::Pointer, "{:p}", "{:.1$p}");
#[cfg(test)]
mod tests {
#[test]
fn empty_display() {
let vec: Vec<f64> = Vec::new();
let dvector = crate::DVector::from_vec(vec);
assert_eq!(format!("{}", dvector), "[ ]")
}
#[test]
fn lower_exp() {
let test = crate::Matrix2::new(1e6, 2e5, 2e-5, 1.);
assert_eq!(
format!("{:e}", test),
r"
┌ ┐
│ 1e6 2e5 │
│ 2e-5 1e0 │
└ ┘
"
)
}
}
/// # Cross product
impl<T: Scalar + ClosedAdd + ClosedSub + ClosedMul, R: Dim, C: Dim, S: RawStorage<T, R, C>>
Matrix<T, R, C, S>
{
/// The perpendicular product between two 2D column vectors, i.e. `a.x * b.y - a.y * b.x`.
#[inline]
#[must_use]
pub fn perp<R2, C2, SB>(&self, b: &Matrix<T, R2, C2, SB>) -> T
where
R2: Dim,
C2: Dim,
SB: RawStorage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, U2>
+ SameNumberOfColumns<C, U1>
+ SameNumberOfRows<R2, U2>
+ SameNumberOfColumns<C2, U1>,
{
let shape = self.shape();
assert_eq!(
shape,
b.shape(),
"2D vector perpendicular product dimension mismatch."
);
assert_eq!(
shape,
(2, 1),
"2D perpendicular product requires (2, 1) vectors {:?}",
shape
);
// SAFETY: assertion above ensures correct shape
let ax = unsafe { self.get_unchecked((0, 0)).clone() };
let ay = unsafe { self.get_unchecked((1, 0)).clone() };
let bx = unsafe { b.get_unchecked((0, 0)).clone() };
let by = unsafe { b.get_unchecked((1, 0)).clone() };
ax * by - ay * bx
}
// TODO: use specialization instead of an assertion.
/// The 3D cross product between two vectors.
///
/// Panics if the shape is not 3D vector. In the future, this will be implemented only for
/// dynamically-sized matrices and statically-sized 3D matrices.
#[inline]
#[must_use]
pub fn cross<R2, C2, SB>(&self, b: &Matrix<T, R2, C2, SB>) -> MatrixCross<T, R, C, R2, C2>
where
R2: Dim,
C2: Dim,
SB: RawStorage<T, R2, C2>,
DefaultAllocator: SameShapeAllocator<T, R, C, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
let shape = self.shape();
assert_eq!(shape, b.shape(), "Vector cross product dimension mismatch.");
assert!(
shape == (3, 1) || shape == (1, 3),
"Vector cross product dimension mismatch: must be (3, 1) or (1, 3) but found {:?}.",
shape
);
if shape.0 == 3 {
unsafe {
let mut res = Matrix::uninit(Dim::from_usize(3), Dim::from_usize(1));
let ax = self.get_unchecked((0, 0));
let ay = self.get_unchecked((1, 0));
let az = self.get_unchecked((2, 0));
let bx = b.get_unchecked((0, 0));
let by = b.get_unchecked((1, 0));
let bz = b.get_unchecked((2, 0));
*res.get_unchecked_mut((0, 0)) =
MaybeUninit::new(ay.clone() * bz.clone() - az.clone() * by.clone());
*res.get_unchecked_mut((1, 0)) =
MaybeUninit::new(az.clone() * bx.clone() - ax.clone() * bz.clone());
*res.get_unchecked_mut((2, 0)) =
MaybeUninit::new(ax.clone() * by.clone() - ay.clone() * bx.clone());
// Safety: res is now fully initialized.
res.assume_init()
}
} else {
unsafe {
let mut res = Matrix::uninit(Dim::from_usize(1), Dim::from_usize(3));
let ax = self.get_unchecked((0, 0));
let ay = self.get_unchecked((0, 1));
let az = self.get_unchecked((0, 2));
let bx = b.get_unchecked((0, 0));
let by = b.get_unchecked((0, 1));
let bz = b.get_unchecked((0, 2));
*res.get_unchecked_mut((0, 0)) =
MaybeUninit::new(ay.clone() * bz.clone() - az.clone() * by.clone());
*res.get_unchecked_mut((0, 1)) =
MaybeUninit::new(az.clone() * bx.clone() - ax.clone() * bz.clone());
*res.get_unchecked_mut((0, 2)) =
MaybeUninit::new(ax.clone() * by.clone() - ay.clone() * bx.clone());
// Safety: res is now fully initialized.
res.assume_init()
}
}
}
}
impl<T: Scalar + Field, S: RawStorage<T, U3>> Vector<T, U3, S> {
/// Computes the matrix `M` such that for all vector `v` we have `M * v == self.cross(&v)`.
#[inline]
#[must_use]
pub fn cross_matrix(&self) -> OMatrix<T, U3, U3> {
OMatrix::<T, U3, U3>::new(
T::zero(),
-self[2].clone(),
self[1].clone(),
self[2].clone(),
T::zero(),
-self[0].clone(),
-self[1].clone(),
self[0].clone(),
T::zero(),
)
}
}
impl<T: SimdComplexField, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
/// The smallest angle between two vectors.
#[inline]
#[must_use]
pub fn angle<R2: Dim, C2: Dim, SB>(&self, other: &Matrix<T, R2, C2, SB>) -> T::SimdRealField
where
SB: Storage<T, R2, C2>,
ShapeConstraint: DimEq<R, R2> + DimEq<C, C2>,
{
let prod = self.dotc(other);
let n1 = self.norm();
let n2 = other.norm();
if n1.is_zero() || n2.is_zero() {
T::SimdRealField::zero()
} else {
let cang = prod.simd_real() / (n1 * n2);
cang.simd_clamp(-T::SimdRealField::one(), T::SimdRealField::one())
.simd_acos()
}
}
}
impl<T, R: Dim, C: Dim, S> AbsDiffEq for Unit<Matrix<T, R, C, S>>
where
T: Scalar + AbsDiffEq,
S: RawStorage<T, R, C>,
T::Epsilon: Clone,
{
type Epsilon = T::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.as_ref().abs_diff_eq(other.as_ref(), epsilon)
}
}
impl<T, R: Dim, C: Dim, S> RelativeEq for Unit<Matrix<T, R, C, S>>
where
T: Scalar + RelativeEq,
S: Storage<T, R, C>,
T::Epsilon: Clone,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.as_ref()
.relative_eq(other.as_ref(), epsilon, max_relative)
}
}
impl<T, R: Dim, C: Dim, S> UlpsEq for Unit<Matrix<T, R, C, S>>
where
T: Scalar + UlpsEq,
S: RawStorage<T, R, C>,
T::Epsilon: Clone,
{
#[inline]
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.as_ref().ulps_eq(other.as_ref(), epsilon, max_ulps)
}
}
impl<T, R, C, S> Hash for Matrix<T, R, C, S>
where
T: Scalar + Hash,
R: Dim,
C: Dim,
S: RawStorage<T, R, C>,
{
fn hash<H: Hasher>(&self, state: &mut H) {
let (nrows, ncols) = self.shape();
(nrows, ncols).hash(state);
for j in 0..ncols {
for i in 0..nrows {
unsafe {
self.get_unchecked((i, j)).hash(state);
}
}
}
}
}