nalgebra/geometry/rotation_construction.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
use num::{One, Zero};
use simba::scalar::{ClosedAdd, ClosedMul, SupersetOf};
use crate::base::{SMatrix, Scalar};
use crate::geometry::Rotation;
impl<T, const D: usize> Default for Rotation<T, D>
where
T: Scalar + Zero + One,
{
fn default() -> Self {
Self::identity()
}
}
/// # Identity
impl<T, const D: usize> Rotation<T, D>
where
T: Scalar + Zero + One,
{
/// Creates a new square identity rotation of the given `dimension`.
///
/// # Example
/// ```
/// # use nalgebra::{Rotation2, Rotation3};
/// # use nalgebra::Vector3;
/// let rot1 = Rotation2::identity();
/// let rot2 = Rotation2::new(std::f32::consts::FRAC_PI_2);
///
/// assert_eq!(rot1 * rot2, rot2);
/// assert_eq!(rot2 * rot1, rot2);
///
/// let rot1 = Rotation3::identity();
/// let rot2 = Rotation3::from_axis_angle(&Vector3::z_axis(), std::f32::consts::FRAC_PI_2);
///
/// assert_eq!(rot1 * rot2, rot2);
/// assert_eq!(rot2 * rot1, rot2);
/// ```
#[inline]
pub fn identity() -> Rotation<T, D> {
Self::from_matrix_unchecked(SMatrix::<T, D, D>::identity())
}
}
impl<T: Scalar, const D: usize> Rotation<T, D> {
/// Cast the components of `self` to another type.
///
/// # Example
/// ```
/// # use nalgebra::Rotation2;
/// let rot = Rotation2::<f64>::identity();
/// let rot2 = rot.cast::<f32>();
/// assert_eq!(rot2, Rotation2::<f32>::identity());
/// ```
pub fn cast<To: Scalar>(self) -> Rotation<To, D>
where
Rotation<To, D>: SupersetOf<Self>,
{
crate::convert(self)
}
}
impl<T, const D: usize> One for Rotation<T, D>
where
T: Scalar + Zero + One + ClosedAdd + ClosedMul,
{
#[inline]
fn one() -> Self {
Self::identity()
}
}