nalgebra/geometry/scale.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num::{One, Zero};
use std::fmt;
use std::hash;
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use crate::base::allocator::Allocator;
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
use crate::base::storage::Owned;
use crate::base::{Const, DefaultAllocator, OMatrix, OVector, SVector, Scalar};
use crate::ClosedDiv;
use crate::ClosedMul;
use crate::geometry::Point;
/// A scale which supports non-uniform scaling.
#[repr(C)]
#[cfg_attr(
all(not(target_os = "cuda"), feature = "cuda"),
derive(cust::DeviceCopy)
)]
#[derive(Copy, Clone)]
pub struct Scale<T, const D: usize> {
/// The scale coordinates, i.e., how much is multiplied to a point's coordinates when it is
/// scaled.
pub vector: SVector<T, D>,
}
impl<T: fmt::Debug, const D: usize> fmt::Debug for Scale<T, D> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
self.vector.as_slice().fmt(formatter)
}
}
impl<T: Scalar + hash::Hash, const D: usize> hash::Hash for Scale<T, D>
where
Owned<T, Const<D>>: hash::Hash,
{
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.vector.hash(state)
}
}
#[cfg(feature = "bytemuck")]
unsafe impl<T, const D: usize> bytemuck::Zeroable for Scale<T, D>
where
T: Scalar + bytemuck::Zeroable,
SVector<T, D>: bytemuck::Zeroable,
{
}
#[cfg(feature = "bytemuck")]
unsafe impl<T, const D: usize> bytemuck::Pod for Scale<T, D>
where
T: Scalar + bytemuck::Pod,
SVector<T, D>: bytemuck::Pod,
{
}
#[cfg(feature = "abomonation-serialize")]
impl<T, const D: usize> Abomonation for Scale<T, D>
where
T: Scalar,
SVector<T, D>: Abomonation,
{
unsafe fn entomb<W: Write>(&self, writer: &mut W) -> IOResult<()> {
self.vector.entomb(writer)
}
fn extent(&self) -> usize {
self.vector.extent()
}
unsafe fn exhume<'a, 'b>(&'a mut self, bytes: &'b mut [u8]) -> Option<&'b mut [u8]> {
self.vector.exhume(bytes)
}
}
#[cfg(feature = "serde-serialize-no-std")]
impl<T: Scalar, const D: usize> Serialize for Scale<T, D>
where
Owned<T, Const<D>>: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.vector.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize-no-std")]
impl<'a, T: Scalar, const D: usize> Deserialize<'a> for Scale<T, D>
where
Owned<T, Const<D>>: Deserialize<'a>,
{
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where
Des: Deserializer<'a>,
{
let matrix = SVector::<T, D>::deserialize(deserializer)?;
Ok(Scale::from(matrix))
}
}
#[cfg(feature = "rkyv-serialize-no-std")]
mod rkyv_impl {
use super::Scale;
use crate::base::SVector;
use rkyv::{offset_of, project_struct, Archive, Deserialize, Fallible, Serialize};
impl<T: Archive, const D: usize> Archive for Scale<T, D> {
type Archived = Scale<T::Archived, D>;
type Resolver = <SVector<T, D> as Archive>::Resolver;
fn resolve(
&self,
pos: usize,
resolver: Self::Resolver,
out: &mut core::mem::MaybeUninit<Self::Archived>,
) {
self.vector.resolve(
pos + offset_of!(Self::Archived, vector),
resolver,
project_struct!(out: Self::Archived => vector),
);
}
}
impl<T: Serialize<S>, S: Fallible + ?Sized, const D: usize> Serialize<S> for Scale<T, D> {
fn serialize(&self, serializer: &mut S) -> Result<Self::Resolver, S::Error> {
self.vector.serialize(serializer)
}
}
impl<T: Archive, _D: Fallible + ?Sized, const D: usize> Deserialize<Scale<T, D>, _D>
for Scale<T::Archived, D>
where
T::Archived: Deserialize<T, _D>,
{
fn deserialize(&self, deserializer: &mut _D) -> Result<Scale<T, D>, _D::Error> {
Ok(Scale {
vector: self.vector.deserialize(deserializer)?,
})
}
}
}
impl<T: Scalar, const D: usize> Scale<T, D> {
/// Inverts `self`.
///
/// # Example
/// ```
/// # use nalgebra::{Scale2, Scale3};
/// let t = Scale3::new(1.0, 2.0, 3.0);
/// assert_eq!(t * t.try_inverse().unwrap(), Scale3::identity());
/// assert_eq!(t.try_inverse().unwrap() * t, Scale3::identity());
///
/// // Work in all dimensions.
/// let t = Scale2::new(1.0, 2.0);
/// assert_eq!(t * t.try_inverse().unwrap(), Scale2::identity());
/// assert_eq!(t.try_inverse().unwrap() * t, Scale2::identity());
///
/// // Returns None if any coordinate is 0.
/// let t = Scale2::new(0.0, 2.0);
/// assert_eq!(t.try_inverse(), None);
/// ```
#[inline]
#[must_use = "Did you mean to use try_inverse_mut()?"]
pub fn try_inverse(&self) -> Option<Scale<T, D>>
where
T: ClosedDiv + One + Zero,
{
for i in 0..D {
if self.vector[i] == T::zero() {
return None;
}
}
return Some(self.vector.map(|e| T::one() / e).into());
}
/// Inverts `self`.
///
/// # Example
/// ```
/// # use nalgebra::{Scale2, Scale3};
///
/// unsafe {
/// let t = Scale3::new(1.0, 2.0, 3.0);
/// assert_eq!(t * t.inverse_unchecked(), Scale3::identity());
/// assert_eq!(t.inverse_unchecked() * t, Scale3::identity());
///
/// // Work in all dimensions.
/// let t = Scale2::new(1.0, 2.0);
/// assert_eq!(t * t.inverse_unchecked(), Scale2::identity());
/// assert_eq!(t.inverse_unchecked() * t, Scale2::identity());
/// }
/// ```
#[inline]
#[must_use]
pub unsafe fn inverse_unchecked(&self) -> Scale<T, D>
where
T: ClosedDiv + One,
{
return self.vector.map(|e| T::one() / e).into();
}
/// Inverts `self`.
///
/// # Example
/// ```
/// # use nalgebra::{Scale2, Scale3};
/// let t = Scale3::new(1.0, 2.0, 3.0);
/// assert_eq!(t * t.pseudo_inverse(), Scale3::identity());
/// assert_eq!(t.pseudo_inverse() * t, Scale3::identity());
///
/// // Work in all dimensions.
/// let t = Scale2::new(1.0, 2.0);
/// assert_eq!(t * t.pseudo_inverse(), Scale2::identity());
/// assert_eq!(t.pseudo_inverse() * t, Scale2::identity());
///
/// // Inverts only non-zero coordinates.
/// let t = Scale2::new(0.0, 2.0);
/// assert_eq!(t * t.pseudo_inverse(), Scale2::new(0.0, 1.0));
/// assert_eq!(t.pseudo_inverse() * t, Scale2::new(0.0, 1.0));
/// ```
#[inline]
#[must_use]
pub fn pseudo_inverse(&self) -> Scale<T, D>
where
T: ClosedDiv + One + Zero,
{
return self
.vector
.map(|e| {
if e != T::zero() {
T::one() / e
} else {
T::zero()
}
})
.into();
}
/// Converts this Scale into its equivalent homogeneous transformation matrix.
///
/// # Example
/// ```
/// # use nalgebra::{Scale2, Scale3, Matrix3, Matrix4};
/// let t = Scale3::new(10.0, 20.0, 30.0);
/// let expected = Matrix4::new(10.0, 0.0, 0.0, 0.0,
/// 0.0, 20.0, 0.0, 0.0,
/// 0.0, 0.0, 30.0, 0.0,
/// 0.0, 0.0, 0.0, 1.0);
/// assert_eq!(t.to_homogeneous(), expected);
///
/// let t = Scale2::new(10.0, 20.0);
/// let expected = Matrix3::new(10.0, 0.0, 0.0,
/// 0.0, 20.0, 0.0,
/// 0.0, 0.0, 1.0);
/// assert_eq!(t.to_homogeneous(), expected);
/// ```
#[inline]
#[must_use]
pub fn to_homogeneous(&self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
where
T: Zero + One + Clone,
Const<D>: DimNameAdd<U1>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
+ Allocator<T, DimNameSum<Const<D>, U1>, U1>,
{
// TODO: use self.vector.push() instead. We can’t right now because
// that would require the DimAdd bound (but here we use DimNameAdd).
// This should be fixable once Rust gets a more complete support of
// const-generics.
let mut v = OVector::from_element(T::one());
for i in 0..D {
v[i] = self.vector[i].clone();
}
return OMatrix::from_diagonal(&v);
}
/// Inverts `self` in-place.
///
/// # Example
/// ```
/// # use nalgebra::{Scale2, Scale3};
/// let t = Scale3::new(1.0, 2.0, 3.0);
/// let mut inv_t = Scale3::new(1.0, 2.0, 3.0);
/// assert!(inv_t.try_inverse_mut());
/// assert_eq!(t * inv_t, Scale3::identity());
/// assert_eq!(inv_t * t, Scale3::identity());
///
/// // Work in all dimensions.
/// let t = Scale2::new(1.0, 2.0);
/// let mut inv_t = Scale2::new(1.0, 2.0);
/// assert!(inv_t.try_inverse_mut());
/// assert_eq!(t * inv_t, Scale2::identity());
/// assert_eq!(inv_t * t, Scale2::identity());
///
/// // Does not perform any operation if a coordinate is 0.
/// let mut t = Scale2::new(0.0, 2.0);
/// assert!(!t.try_inverse_mut());
/// ```
#[inline]
pub fn try_inverse_mut(&mut self) -> bool
where
T: ClosedDiv + One + Zero,
{
if let Some(v) = self.try_inverse() {
self.vector = v.vector;
true
} else {
false
}
}
}
impl<T: Scalar + ClosedMul, const D: usize> Scale<T, D> {
/// Translate the given point.
///
/// This is the same as the multiplication `self * pt`.
///
/// # Example
/// ```
/// # use nalgebra::{Scale3, Point3};
/// let t = Scale3::new(1.0, 2.0, 3.0);
/// let transformed_point = t.transform_point(&Point3::new(4.0, 5.0, 6.0));
/// assert_eq!(transformed_point, Point3::new(4.0, 10.0, 18.0));
/// ```
#[inline]
#[must_use]
pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
self * pt
}
}
impl<T: Scalar + ClosedDiv + ClosedMul + One + Zero, const D: usize> Scale<T, D> {
/// Translate the given point by the inverse of this Scale.
///
/// # Example
/// ```
/// # use nalgebra::{Scale3, Point3};
/// let t = Scale3::new(1.0, 2.0, 3.0);
/// let transformed_point = t.try_inverse_transform_point(&Point3::new(4.0, 6.0, 6.0)).unwrap();
/// assert_eq!(transformed_point, Point3::new(4.0, 3.0, 2.0));
///
/// // Returns None if the inverse doesn't exist.
/// let t = Scale3::new(1.0, 0.0, 3.0);
/// let transformed_point = t.try_inverse_transform_point(&Point3::new(4.0, 6.0, 6.0));
/// assert_eq!(transformed_point, None);
/// ```
#[inline]
#[must_use]
pub fn try_inverse_transform_point(&self, pt: &Point<T, D>) -> Option<Point<T, D>> {
self.try_inverse().map(|s| s * pt)
}
}
impl<T: Scalar + Eq, const D: usize> Eq for Scale<T, D> {}
impl<T: Scalar + PartialEq, const D: usize> PartialEq for Scale<T, D> {
#[inline]
fn eq(&self, right: &Scale<T, D>) -> bool {
self.vector == right.vector
}
}
impl<T: Scalar + AbsDiffEq, const D: usize> AbsDiffEq for Scale<T, D>
where
T::Epsilon: Clone,
{
type Epsilon = T::Epsilon;
#[inline]
fn default_epsilon() -> Self::Epsilon {
T::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.vector.abs_diff_eq(&other.vector, epsilon)
}
}
impl<T: Scalar + RelativeEq, const D: usize> RelativeEq for Scale<T, D>
where
T::Epsilon: Clone,
{
#[inline]
fn default_max_relative() -> Self::Epsilon {
T::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool {
self.vector
.relative_eq(&other.vector, epsilon, max_relative)
}
}
impl<T: Scalar + UlpsEq, const D: usize> UlpsEq for Scale<T, D>
where
T::Epsilon: Clone,
{
#[inline]
fn default_max_ulps() -> u32 {
T::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.vector.ulps_eq(&other.vector, epsilon, max_ulps)
}
}
/*
*
* Display
*
*/
impl<T: Scalar + fmt::Display, const D: usize> fmt::Display for Scale<T, D> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let precision = f.precision().unwrap_or(3);
writeln!(f, "Scale {{")?;
write!(f, "{:.*}", precision, self.vector)?;
writeln!(f, "}}")
}
}