zerocopy/pointer/inner.rs
1// Copyright 2024 The Fuchsia Authors
2//
3// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6// This file may not be copied, modified, or distributed except according to
7// those terms.
8
9use core::{marker::PhantomData, mem, ops::Range, ptr::NonNull};
10
11pub use _def::PtrInner;
12
13#[allow(unused_imports)]
14use crate::util::polyfills::NumExt as _;
15use crate::{
16 layout::{CastType, MetadataCastError},
17 util::AsAddress,
18 AlignmentError, CastError, KnownLayout, MetadataOf, SizeError, SplitAt,
19};
20
21mod _def {
22 use super::*;
23 /// The inner pointer stored inside a [`Ptr`][crate::Ptr].
24 ///
25 /// `PtrInner<'a, T>` is [covariant] in `'a` and invariant in `T`.
26 ///
27 /// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
28 #[allow(missing_debug_implementations)]
29 pub struct PtrInner<'a, T>
30 where
31 T: ?Sized,
32 {
33 /// # Invariants
34 ///
35 /// 0. If `ptr`'s referent is not zero sized, then `ptr` has valid
36 /// provenance for its referent, which is entirely contained in some
37 /// Rust allocation, `A`.
38 /// 1. If `ptr`'s referent is not zero sized, `A` is guaranteed to live
39 /// for at least `'a`.
40 ///
41 /// # Postconditions
42 ///
43 /// By virtue of these invariants, code may assume the following, which
44 /// are logical implications of the invariants:
45 /// - `ptr`'s referent is not larger than `isize::MAX` bytes \[1\]
46 /// - `ptr`'s referent does not wrap around the address space \[1\]
47 ///
48 /// \[1\] Per <https://doc.rust-lang.org/1.85.0/std/ptr/index.html#allocated-object>:
49 ///
50 /// For any allocated object with `base` address, `size`, and a set of
51 /// `addresses`, the following are guaranteed:
52 /// ...
53 /// - `size <= isize::MAX`
54 ///
55 /// As a consequence of these guarantees, given any address `a` within
56 /// the set of addresses of an allocated object:
57 /// ...
58 /// - It is guaranteed that, given `o = a - base` (i.e., the offset of
59 /// `a` within the allocated object), `base + o` will not wrap around
60 /// the address space (in other words, will not overflow `usize`)
61 ptr: NonNull<T>,
62 // SAFETY: `&'a UnsafeCell<T>` is covariant in `'a` and invariant in `T`
63 // [1]. We use this construction rather than the equivalent `&mut T`,
64 // because our MSRV of 1.65 prohibits `&mut` types in const contexts.
65 //
66 // [1] https://doc.rust-lang.org/1.81.0/reference/subtyping.html#variance
67 _marker: PhantomData<&'a core::cell::UnsafeCell<T>>,
68 }
69
70 impl<'a, T: 'a + ?Sized> Copy for PtrInner<'a, T> {}
71 impl<'a, T: 'a + ?Sized> Clone for PtrInner<'a, T> {
72 #[inline(always)]
73 fn clone(&self) -> PtrInner<'a, T> {
74 // SAFETY: None of the invariants on `ptr` are affected by having
75 // multiple copies of a `PtrInner`.
76 *self
77 }
78 }
79
80 impl<'a, T: 'a + ?Sized> PtrInner<'a, T> {
81 /// Constructs a `Ptr` from a [`NonNull`].
82 ///
83 /// # Safety
84 ///
85 /// The caller promises that:
86 ///
87 /// 0. If `ptr`'s referent is not zero sized, then `ptr` has valid
88 /// provenance for its referent, which is entirely contained in some
89 /// Rust allocation, `A`.
90 /// 1. If `ptr`'s referent is not zero sized, `A` is guaranteed to live
91 /// for at least `'a`.
92 #[inline(always)]
93 #[must_use]
94 pub const unsafe fn new(ptr: NonNull<T>) -> PtrInner<'a, T> {
95 // SAFETY: The caller has promised to satisfy all safety invariants
96 // of `PtrInner`.
97 Self { ptr, _marker: PhantomData }
98 }
99
100 /// Converts this `PtrInner<T>` to a [`NonNull<T>`].
101 ///
102 /// Note that this method does not consume `self`. The caller should
103 /// watch out for `unsafe` code which uses the returned `NonNull` in a
104 /// way that violates the safety invariants of `self`.
105 #[inline(always)]
106 #[must_use]
107 pub const fn as_non_null(&self) -> NonNull<T> {
108 self.ptr
109 }
110 }
111}
112
113impl<'a, T: ?Sized> PtrInner<'a, T> {
114 /// Constructs a `PtrInner` from a reference.
115 #[inline]
116 pub(crate) fn from_ref(ptr: &'a T) -> Self {
117 let ptr = NonNull::from(ptr);
118 // SAFETY:
119 // 0. If `ptr`'s referent is not zero sized, then `ptr`, by invariant on
120 // `&'a T` [1], has valid provenance for its referent, which is
121 // entirely contained in some Rust allocation, `A`.
122 // 1. If `ptr`'s referent is not zero sized, then `A`, by invariant on
123 // `&'a T`, is guaranteed to live for at least `'a`.
124 //
125 // [1] Per https://doc.rust-lang.org/1.85.0/std/primitive.reference.html#safety:
126 //
127 // For all types, `T: ?Sized`, and for all `t: &T` or `t: &mut T`,
128 // when such values cross an API boundary, the following invariants
129 // must generally be upheld:
130 // ...
131 // - if `size_of_val(t) > 0`, then `t` is dereferenceable for
132 // `size_of_val(t)` many bytes
133 //
134 // If `t` points at address `a`, being “dereferenceable” for N bytes
135 // means that the memory range `[a, a + N)` is all contained within a
136 // single allocated object.
137 unsafe { Self::new(ptr) }
138 }
139
140 /// Constructs a `PtrInner` from a mutable reference.
141 #[inline]
142 pub(crate) fn from_mut(ptr: &'a mut T) -> Self {
143 let ptr = NonNull::from(ptr);
144 // SAFETY:
145 // 0. If `ptr`'s referent is not zero sized, then `ptr`, by invariant on
146 // `&'a mut T` [1], has valid provenance for its referent, which is
147 // entirely contained in some Rust allocation, `A`.
148 // 1. If `ptr`'s referent is not zero sized, then `A`, by invariant on
149 // `&'a mut T`, is guaranteed to live for at least `'a`.
150 //
151 // [1] Per https://doc.rust-lang.org/1.85.0/std/primitive.reference.html#safety:
152 //
153 // For all types, `T: ?Sized`, and for all `t: &T` or `t: &mut T`,
154 // when such values cross an API boundary, the following invariants
155 // must generally be upheld:
156 // ...
157 // - if `size_of_val(t) > 0`, then `t` is dereferenceable for
158 // `size_of_val(t)` many bytes
159 //
160 // If `t` points at address `a`, being “dereferenceable” for N bytes
161 // means that the memory range `[a, a + N)` is all contained within a
162 // single allocated object.
163 unsafe { Self::new(ptr) }
164 }
165
166 #[must_use]
167 #[inline(always)]
168 pub fn cast_sized<U>(self) -> PtrInner<'a, U>
169 where
170 T: Sized,
171 {
172 static_assert!(T, U => mem::size_of::<T>() >= mem::size_of::<U>());
173 // SAFETY: By the preceding assert, `U` is no larger than `T`, which is
174 // the size of `self`'s referent.
175 unsafe { self.cast() }
176 }
177
178 /// # Safety
179 ///
180 /// `U` must not be larger than the size of `self`'s referent.
181 #[must_use]
182 #[inline(always)]
183 pub unsafe fn cast<U>(self) -> PtrInner<'a, U> {
184 let ptr = self.as_non_null().cast::<U>();
185
186 // SAFETY: The caller promises that `U` is no larger than `self`'s
187 // referent. Thus, `ptr` addresses a subset of the bytes addressed by
188 // `self`.
189 //
190 // 0. By invariant on `self`, if `self`'s referent is not zero sized,
191 // then `self` has valid provenance for its referent, which is
192 // entirely contained in some Rust allocation, `A`. Thus, the same
193 // holds of `ptr`.
194 // 1. By invariant on `self`, if `self`'s referent is not zero sized,
195 // then `A` is guaranteed to live for at least `'a`.
196 unsafe { PtrInner::new(ptr) }
197 }
198}
199
200#[allow(clippy::needless_lifetimes)]
201impl<'a, T> PtrInner<'a, T>
202where
203 T: ?Sized + KnownLayout,
204{
205 /// Extracts the metadata of this `ptr`.
206 pub(crate) fn meta(self) -> MetadataOf<T> {
207 let meta = T::pointer_to_metadata(self.as_non_null().as_ptr());
208 // SAFETY: By invariant on `PtrInner`, `self.as_non_null()` addresses no
209 // more than `isize::MAX` bytes.
210 unsafe { MetadataOf::new_unchecked(meta) }
211 }
212
213 /// Produces a `PtrInner` with the same address and provenance as `self` but
214 /// the given `meta`.
215 ///
216 /// # Safety
217 ///
218 /// The caller promises that if `self`'s referent is not zero sized, then
219 /// a pointer constructed from its address with the given `meta` metadata
220 /// will address a subset of the allocation pointed to by `self`.
221 #[inline]
222 pub(crate) unsafe fn with_meta(self, meta: T::PointerMetadata) -> Self
223 where
224 T: KnownLayout,
225 {
226 let raw = T::raw_from_ptr_len(self.as_non_null().cast(), meta);
227
228 // SAFETY:
229 //
230 // Lemma 0: `raw` either addresses zero bytes, or addresses a subset of
231 // the allocation pointed to by `self` and has the same
232 // provenance as `self`. Proof: `raw` is constructed using
233 // provenance-preserving operations, and the caller has
234 // promised that, if `self`'s referent is not zero-sized, the
235 // resulting pointer addresses a subset of the allocation
236 // pointed to by `self`.
237 //
238 // 0. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is not
239 // zero sized, then `ptr` is derived from some valid Rust allocation,
240 // `A`.
241 // 1. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is not
242 // zero sized, then `ptr` has valid provenance for `A`.
243 // 2. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is not
244 // zero sized, then `ptr` addresses a byte range which is entirely
245 // contained in `A`.
246 // 3. Per Lemma 0 and by invariant on `self`, `ptr` addresses a byte
247 // range whose length fits in an `isize`.
248 // 4. Per Lemma 0 and by invariant on `self`, `ptr` addresses a byte
249 // range which does not wrap around the address space.
250 // 5. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is not
251 // zero sized, then `A` is guaranteed to live for at least `'a`.
252 unsafe { PtrInner::new(raw) }
253 }
254
255 pub(crate) fn as_bytes(self) -> PtrInner<'a, [u8]> {
256 let ptr = self.as_non_null();
257 let bytes = match T::size_of_val_raw(ptr) {
258 Some(bytes) => bytes,
259 // SAFETY: `KnownLayout::size_of_val_raw` promises to always
260 // return `Some` so long as the resulting size fits in a
261 // `usize`. By invariant on `PtrInner`, `self` refers to a range
262 // of bytes whose size fits in an `isize`, which implies that it
263 // also fits in a `usize`.
264 None => unsafe { core::hint::unreachable_unchecked() },
265 };
266
267 let ptr = core::ptr::slice_from_raw_parts_mut(ptr.cast::<u8>().as_ptr(), bytes);
268
269 // SAFETY: `ptr` has the same address as `ptr = self.as_non_null()`,
270 // which is non-null by construction.
271 let ptr = unsafe { NonNull::new_unchecked(ptr) };
272
273 // SAFETY: `ptr` points to `bytes` `u8`s starting at the same address as
274 // `self`'s referent. Since `bytes` is the length of `self`'s referent,
275 // `ptr` addresses the same byte range as `self`. Thus, by invariant on
276 // `self` (as a `PtrInner`):
277 //
278 // 0. If `ptr`'s referent is not zero sized, then `ptr` has valid
279 // provenance for its referent, which is entirely contained in some
280 // Rust allocation, `A`.
281 // 1. If `ptr`'s referent is not zero sized, `A` is guaranteed to live
282 // for at least `'a`.
283 unsafe { PtrInner::new(ptr) }
284 }
285}
286
287#[allow(clippy::needless_lifetimes)]
288impl<'a, T> PtrInner<'a, T>
289where
290 T: ?Sized + KnownLayout<PointerMetadata = usize>,
291{
292 /// Splits `T` in two.
293 ///
294 /// # Safety
295 ///
296 /// The caller promises that:
297 /// - `l_len.get() <= self.meta()`.
298 ///
299 /// ## (Non-)Overlap
300 ///
301 /// Given `let (left, right) = ptr.split_at(l_len)`, it is guaranteed that
302 /// `left` and `right` are contiguous and non-overlapping if
303 /// `l_len.padding_needed_for() == 0`. This is true for all `[T]`.
304 ///
305 /// If `l_len.padding_needed_for() != 0`, then the left pointer will overlap
306 /// the right pointer to satisfy `T`'s padding requirements.
307 pub(crate) unsafe fn split_at_unchecked(
308 self,
309 l_len: crate::util::MetadataOf<T>,
310 ) -> (Self, PtrInner<'a, [T::Elem]>)
311 where
312 T: SplitAt,
313 {
314 let l_len = l_len.get();
315
316 // SAFETY: The caller promises that `l_len.get() <= self.meta()`.
317 // Trivially, `0 <= l_len`.
318 let left = unsafe { self.with_meta(l_len) };
319
320 let right = self.trailing_slice();
321 // SAFETY: The caller promises that `l_len <= self.meta() = slf.meta()`.
322 // Trivially, `slf.meta() <= slf.meta()`.
323 let right = unsafe { right.slice_unchecked(l_len..self.meta().get()) };
324
325 // SAFETY: If `l_len.padding_needed_for() == 0`, then `left` and `right`
326 // are non-overlapping. Proof: `left` is constructed `slf` with `l_len`
327 // as its (exclusive) upper bound. If `l_len.padding_needed_for() == 0`,
328 // then `left` requires no trailing padding following its final element.
329 // Since `right` is constructed from `slf`'s trailing slice with `l_len`
330 // as its (inclusive) lower bound, no byte is referred to by both
331 // pointers.
332 //
333 // Conversely, `l_len.padding_needed_for() == N`, where `N
334 // > 0`, `left` requires `N` bytes of trailing padding following its
335 // final element. Since `right` is constructed from the trailing slice
336 // of `slf` with `l_len` as its (inclusive) lower bound, the first `N`
337 // bytes of `right` are aliased by `left`.
338 (left, right)
339 }
340
341 /// Produces the trailing slice of `self`.
342 pub(crate) fn trailing_slice(self) -> PtrInner<'a, [T::Elem]>
343 where
344 T: SplitAt,
345 {
346 let offset = crate::trailing_slice_layout::<T>().offset;
347
348 let bytes = self.as_non_null().cast::<u8>().as_ptr();
349
350 // SAFETY:
351 // - By invariant on `T: KnownLayout`, `T::LAYOUT` describes `T`'s
352 // layout. `offset` is the offset of the trailing slice within `T`,
353 // which is by definition in-bounds or one byte past the end of any
354 // `T`, regardless of metadata. By invariant on `PtrInner`, `self`
355 // (and thus `bytes`) points to a byte range of size `<= isize::MAX`,
356 // and so `offset <= isize::MAX`. Since `size_of::<u8>() == 1`,
357 // `offset * size_of::<u8>() <= isize::MAX`.
358 // - If `offset > 0`, then by invariant on `PtrInner`, `self` (and thus
359 // `bytes`) points to a byte range entirely contained within the same
360 // allocated object as `self`. As explained above, this offset results
361 // in a pointer to or one byte past the end of this allocated object.
362 let bytes = unsafe { bytes.add(offset) };
363
364 // SAFETY: By the preceding safety argument, `bytes` is within or one
365 // byte past the end of the same allocated object as `self`, which
366 // ensures that it is non-null.
367 let bytes = unsafe { NonNull::new_unchecked(bytes) };
368
369 let ptr = KnownLayout::raw_from_ptr_len(bytes, self.meta().get());
370
371 // SAFETY:
372 // 0. If `ptr`'s referent is not zero sized, then `ptr` is derived from
373 // some valid Rust allocation, `A`, because `ptr` is derived from
374 // the same allocated object as `self`.
375 // 1. If `ptr`'s referent is not zero sized, then `ptr` has valid
376 // provenance for `A` because `raw` is derived from the same
377 // allocated object as `self` via provenance-preserving operations.
378 // 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a byte
379 // range which is entirely contained in `A`, by previous safety proof
380 // on `bytes`.
381 // 3. `ptr` addresses a byte range whose length fits in an `isize`, by
382 // consequence of #2.
383 // 4. `ptr` addresses a byte range which does not wrap around the
384 // address space, by consequence of #2.
385 // 5. If `ptr`'s referent is not zero sized, then `A` is guaranteed to
386 // live for at least `'a`, because `ptr` is derived from `self`.
387 unsafe { PtrInner::new(ptr) }
388 }
389}
390
391#[allow(clippy::needless_lifetimes)]
392impl<'a, T> PtrInner<'a, [T]> {
393 /// Creates a pointer which addresses the given `range` of self.
394 ///
395 /// # Safety
396 ///
397 /// `range` is a valid range (`start <= end`) and `end <= self.meta()`.
398 pub(crate) unsafe fn slice_unchecked(self, range: Range<usize>) -> Self {
399 let base = self.as_non_null().cast::<T>().as_ptr();
400
401 // SAFETY: The caller promises that `start <= end <= self.meta()`. By
402 // invariant, if `self`'s referent is not zero-sized, then `self` refers
403 // to a byte range which is contained within a single allocation, which
404 // is no more than `isize::MAX` bytes long, and which does not wrap
405 // around the address space. Thus, this pointer arithmetic remains
406 // in-bounds of the same allocation, and does not wrap around the
407 // address space. The offset (in bytes) does not overflow `isize`.
408 //
409 // If `self`'s referent is zero-sized, then these conditions are
410 // trivially satisfied.
411 let base = unsafe { base.add(range.start) };
412
413 // SAFETY: The caller promises that `start <= end`, and so this will not
414 // underflow.
415 #[allow(unstable_name_collisions)]
416 let len = unsafe { range.end.unchecked_sub(range.start) };
417
418 let ptr = core::ptr::slice_from_raw_parts_mut(base, len);
419
420 // SAFETY: By invariant, `self`'s referent is either a ZST or lives
421 // entirely in an allocation. `ptr` points inside of or one byte past
422 // the end of that referent. Thus, in either case, `ptr` is non-null.
423 let ptr = unsafe { NonNull::new_unchecked(ptr) };
424
425 // SAFETY:
426 //
427 // Lemma 0: `ptr` addresses a subset of the bytes addressed by `self`,
428 // and has the same provenance. Proof: The caller guarantees
429 // that `start <= end <= self.meta()`. Thus, `base` is
430 // in-bounds of `self`, and `base + (end - start)` is also
431 // in-bounds of self. Finally, `ptr` is constructed using
432 // provenance-preserving operations.
433 //
434 // 0. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is not
435 // zero sized, then `ptr` has valid provenance for its referent,
436 // which is entirely contained in some Rust allocation, `A`.
437 // 1. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is not
438 // zero sized, then `A` is guaranteed to live for at least `'a`.
439 unsafe { PtrInner::new(ptr) }
440 }
441
442 /// Iteratively projects the elements `PtrInner<T>` from `PtrInner<[T]>`.
443 pub(crate) fn iter(&self) -> impl Iterator<Item = PtrInner<'a, T>> {
444 // FIXME(#429): Once `NonNull::cast` documents that it preserves
445 // provenance, cite those docs.
446 let base = self.as_non_null().cast::<T>().as_ptr();
447 (0..self.meta().get()).map(move |i| {
448 // FIXME(https://github.com/rust-lang/rust/issues/74265): Use
449 // `NonNull::get_unchecked_mut`.
450
451 // SAFETY: If the following conditions are not satisfied
452 // `pointer::cast` may induce Undefined Behavior [1]:
453 //
454 // > - The computed offset, `count * size_of::<T>()` bytes, must not
455 // > overflow `isize``.
456 // > - If the computed offset is non-zero, then `self` must be
457 // > derived from a pointer to some allocated object, and the
458 // > entire memory range between `self` and the result must be in
459 // > bounds of that allocated object. In particular, this range
460 // > must not “wrap around” the edge of the address space.
461 //
462 // [1] https://doc.rust-lang.org/std/primitive.pointer.html#method.add
463 //
464 // We satisfy both of these conditions here:
465 // - By invariant on `Ptr`, `self` addresses a byte range whose
466 // length fits in an `isize`. Since `elem` is contained in `self`,
467 // the computed offset of `elem` must fit within `isize.`
468 // - If the computed offset is non-zero, then this means that the
469 // referent is not zero-sized. In this case, `base` points to an
470 // allocated object (by invariant on `self`). Thus:
471 // - By contract, `self.meta()` accurately reflects the number of
472 // elements in the slice. `i` is in bounds of `c.meta()` by
473 // construction, and so the result of this addition cannot
474 // overflow past the end of the allocation referred to by `c`.
475 // - By invariant on `Ptr`, `self` addresses a byte range which
476 // does not wrap around the address space. Since `elem` is
477 // contained in `self`, the computed offset of `elem` must wrap
478 // around the address space.
479 //
480 // FIXME(#429): Once `pointer::add` documents that it preserves
481 // provenance, cite those docs.
482 let elem = unsafe { base.add(i) };
483
484 // SAFETY: `elem` must not be null. `base` is constructed from a
485 // `NonNull` pointer, and the addition that produces `elem` must not
486 // overflow or wrap around, so `elem >= base > 0`.
487 //
488 // FIXME(#429): Once `NonNull::new_unchecked` documents that it
489 // preserves provenance, cite those docs.
490 let elem = unsafe { NonNull::new_unchecked(elem) };
491
492 // SAFETY: The safety invariants of `Ptr::new` (see definition) are
493 // satisfied:
494 // 0. If `elem`'s referent is not zero sized, then `elem` has valid
495 // provenance for its referent, because it derived from `self`
496 // using a series of provenance-preserving operations, and
497 // because `self` has valid provenance for its referent. By the
498 // same argument, `elem`'s referent is entirely contained within
499 // the same allocated object as `self`'s referent.
500 // 1. If `elem`'s referent is not zero sized, then the allocation of
501 // `elem` is guaranteed to live for at least `'a`, because `elem`
502 // is entirely contained in `self`, which lives for at least `'a`
503 // by invariant on `Ptr`.
504 unsafe { PtrInner::new(elem) }
505 })
506 }
507}
508
509impl<'a, T, const N: usize> PtrInner<'a, [T; N]> {
510 /// Casts this pointer-to-array into a slice.
511 ///
512 /// # Safety
513 ///
514 /// Callers may assume that the returned `PtrInner` references the same
515 /// address and length as `self`.
516 #[allow(clippy::wrong_self_convention)]
517 pub(crate) fn as_slice(self) -> PtrInner<'a, [T]> {
518 let start = self.as_non_null().cast::<T>().as_ptr();
519 let slice = core::ptr::slice_from_raw_parts_mut(start, N);
520 // SAFETY: `slice` is not null, because it is derived from `start`
521 // which is non-null.
522 let slice = unsafe { NonNull::new_unchecked(slice) };
523 // SAFETY: Lemma: In the following safety arguments, note that `slice`
524 // is derived from `self` in two steps: first, by casting `self: [T; N]`
525 // to `start: T`, then by constructing a pointer to a slice starting at
526 // `start` of length `N`. As a result, `slice` references exactly the
527 // same allocation as `self`, if any.
528 //
529 // 0. By the above lemma, if `slice`'s referent is not zero sized, then
530 // `slice` has the same referent as `self`. By invariant on `self`,
531 // this referent is entirely contained within some allocation, `A`.
532 // Because `slice` was constructed using provenance-preserving
533 // operations, it has provenance for its entire referent.
534 // 1. By the above lemma, if `slice`'s referent is not zero sized, then
535 // `A` is guaranteed to live for at least `'a`, because it is derived
536 // from the same allocation as `self`, which, by invariant on `Ptr`,
537 // lives for at least `'a`.
538 unsafe { PtrInner::new(slice) }
539 }
540}
541
542impl<'a> PtrInner<'a, [u8]> {
543 /// Attempts to cast `self` to a `U` using the given cast type.
544 ///
545 /// If `U` is a slice DST and pointer metadata (`meta`) is provided, then
546 /// the cast will only succeed if it would produce an object with the given
547 /// metadata.
548 ///
549 /// Returns `None` if the resulting `U` would be invalidly-aligned, if no
550 /// `U` can fit in `self`, or if the provided pointer metadata describes an
551 /// invalid instance of `U`. On success, returns a pointer to the
552 /// largest-possible `U` which fits in `self`.
553 ///
554 /// # Safety
555 ///
556 /// The caller may assume that this implementation is correct, and may rely
557 /// on that assumption for the soundness of their code. In particular, the
558 /// caller may assume that, if `try_cast_into` returns `Some((ptr,
559 /// remainder))`, then `ptr` and `remainder` refer to non-overlapping byte
560 /// ranges within `self`, and that `ptr` and `remainder` entirely cover
561 /// `self`. Finally:
562 /// - If this is a prefix cast, `ptr` has the same address as `self`.
563 /// - If this is a suffix cast, `remainder` has the same address as `self`.
564 #[inline]
565 pub(crate) fn try_cast_into<U>(
566 self,
567 cast_type: CastType,
568 meta: Option<U::PointerMetadata>,
569 ) -> Result<(PtrInner<'a, U>, PtrInner<'a, [u8]>), CastError<Self, U>>
570 where
571 U: 'a + ?Sized + KnownLayout,
572 {
573 // PANICS: By invariant, the byte range addressed by
574 // `self.as_non_null()` does not wrap around the address space. This
575 // implies that the sum of the address (represented as a `usize`) and
576 // length do not overflow `usize`, as required by
577 // `validate_cast_and_convert_metadata`. Thus, this call to
578 // `validate_cast_and_convert_metadata` will only panic if `U` is a DST
579 // whose trailing slice element is zero-sized.
580 let maybe_metadata = MetadataOf::<U>::validate_cast_and_convert_metadata(
581 AsAddress::addr(self.as_non_null().as_ptr()),
582 self.meta(),
583 cast_type,
584 meta,
585 );
586
587 let (elems, split_at) = match maybe_metadata {
588 Ok((elems, split_at)) => (elems, split_at),
589 Err(MetadataCastError::Alignment) => {
590 // SAFETY: Since `validate_cast_and_convert_metadata` returned
591 // an alignment error, `U` must have an alignment requirement
592 // greater than one.
593 let err = unsafe { AlignmentError::<_, U>::new_unchecked(self) };
594 return Err(CastError::Alignment(err));
595 }
596 Err(MetadataCastError::Size) => return Err(CastError::Size(SizeError::new(self))),
597 };
598
599 // SAFETY: `validate_cast_and_convert_metadata` promises to return
600 // `split_at <= self.meta()`.
601 //
602 // Lemma 0: `l_slice` and `r_slice` are non-overlapping. Proof: By
603 // contract on `PtrInner::split_at_unchecked`, the produced `PtrInner`s
604 // are always non-overlapping if `self` is a `[T]`; here it is a `[u8]`.
605 let (l_slice, r_slice) = unsafe { self.split_at_unchecked(split_at) };
606
607 let (target, remainder) = match cast_type {
608 CastType::Prefix => (l_slice, r_slice),
609 CastType::Suffix => (r_slice, l_slice),
610 };
611
612 let base = target.as_non_null().cast::<u8>();
613
614 let ptr = U::raw_from_ptr_len(base, elems.get());
615
616 // SAFETY:
617 // 0. By invariant, if `target`'s referent is not zero sized, then
618 // `target` has provenance valid for some Rust allocation, `A`.
619 // Because `ptr` is derived from `target` via provenance-preserving
620 // operations, `ptr` will also have provenance valid for its entire
621 // referent.
622 // 1. `validate_cast_and_convert_metadata` promises that the object
623 // described by `elems` and `split_at` lives at a byte range which is
624 // a subset of the input byte range. Thus, by invariant, if
625 // `target`'s referent is not zero sized, then `target` refers to an
626 // allocation which is guaranteed to live for at least `'a`, and thus
627 // so does `ptr`.
628 Ok((unsafe { PtrInner::new(ptr) }, remainder))
629 }
630}
631
632#[cfg(test)]
633mod tests {
634 use super::*;
635 use crate::*;
636
637 #[test]
638 fn test_meta() {
639 let arr = [1; 16];
640 let dst = <[u8]>::ref_from_bytes(&arr[..]).unwrap();
641 let ptr = PtrInner::from_ref(dst);
642 assert_eq!(ptr.meta().get(), 16);
643
644 // SAFETY: 8 is less than 16
645 let ptr = unsafe { ptr.with_meta(8) };
646
647 assert_eq!(ptr.meta().get(), 8);
648 }
649
650 #[test]
651 fn test_split_at() {
652 fn test_split_at<const OFFSET: usize, const BUFFER_SIZE: usize>() {
653 #[derive(FromBytes, KnownLayout, SplitAt, Immutable)]
654 #[repr(C)]
655 struct SliceDst<const OFFSET: usize> {
656 prefix: [u8; OFFSET],
657 trailing: [u8],
658 }
659
660 let n: usize = BUFFER_SIZE - OFFSET;
661 let arr = [1; BUFFER_SIZE];
662 let dst = SliceDst::<OFFSET>::ref_from_bytes(&arr[..]).unwrap();
663 let ptr = PtrInner::from_ref(dst);
664 for i in 0..=n {
665 assert_eq!(ptr.meta().get(), n);
666 // SAFETY: `i` is in bounds by construction.
667 let i = unsafe { MetadataOf::new_unchecked(i) };
668 // SAFETY: `i` is in bounds by construction.
669 let (l, r) = unsafe { ptr.split_at_unchecked(i) };
670 // SAFETY: Points to a valid value by construction.
671 #[allow(clippy::undocumented_unsafe_blocks, clippy::as_conversions)]
672 // Clippy false positive
673 let l_sum: usize = l
674 .trailing_slice()
675 .iter()
676 .map(|ptr| unsafe { core::ptr::read_unaligned(ptr.as_non_null().as_ptr()) }
677 as usize)
678 .sum();
679 // SAFETY: Points to a valid value by construction.
680 #[allow(clippy::undocumented_unsafe_blocks, clippy::as_conversions)]
681 // Clippy false positive
682 let r_sum: usize = r
683 .iter()
684 .map(|ptr| unsafe { core::ptr::read_unaligned(ptr.as_non_null().as_ptr()) }
685 as usize)
686 .sum();
687 assert_eq!(l_sum, i.get());
688 assert_eq!(r_sum, n - i.get());
689 assert_eq!(l_sum + r_sum, n);
690 }
691 }
692
693 test_split_at::<0, 16>();
694 test_split_at::<1, 17>();
695 test_split_at::<2, 18>();
696 }
697
698 #[test]
699 fn test_trailing_slice() {
700 fn test_trailing_slice<const OFFSET: usize, const BUFFER_SIZE: usize>() {
701 #[derive(FromBytes, KnownLayout, SplitAt, Immutable)]
702 #[repr(C)]
703 struct SliceDst<const OFFSET: usize> {
704 prefix: [u8; OFFSET],
705 trailing: [u8],
706 }
707
708 let n: usize = BUFFER_SIZE - OFFSET;
709 let arr = [1; BUFFER_SIZE];
710 let dst = SliceDst::<OFFSET>::ref_from_bytes(&arr[..]).unwrap();
711 let ptr = PtrInner::from_ref(dst);
712
713 assert_eq!(ptr.meta().get(), n);
714 let trailing = ptr.trailing_slice();
715 assert_eq!(trailing.meta().get(), n);
716
717 assert_eq!(
718 // SAFETY: We assume this to be sound for the sake of this test,
719 // which will fail, here, in miri, if the safety precondition of
720 // `offset_of` is not satisfied.
721 unsafe {
722 #[allow(clippy::as_conversions)]
723 let offset = (trailing.as_non_null().as_ptr() as *mut u8)
724 .offset_from(ptr.as_non_null().as_ptr() as *mut _);
725 offset
726 },
727 isize::try_from(OFFSET).unwrap(),
728 );
729
730 // SAFETY: Points to a valid value by construction.
731 #[allow(clippy::undocumented_unsafe_blocks, clippy::as_conversions)]
732 // Clippy false positive
733 let trailing: usize =
734 trailing
735 .iter()
736 .map(|ptr| unsafe { core::ptr::read_unaligned(ptr.as_non_null().as_ptr()) }
737 as usize)
738 .sum();
739
740 assert_eq!(trailing, n);
741 }
742
743 test_trailing_slice::<0, 16>();
744 test_trailing_slice::<1, 17>();
745 test_trailing_slice::<2, 18>();
746 }
747}