bindgen/ir/traversal.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
//! Traversal of the graph of IR items and types.
use super::context::{BindgenContext, ItemId};
use super::item::ItemSet;
use std::collections::{BTreeMap, VecDeque};
/// An outgoing edge in the IR graph is a reference from some item to another
/// item:
///
/// from --> to
///
/// The `from` is left implicit: it is the concrete `Trace` implementer which
/// yielded this outgoing edge.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Edge {
to: ItemId,
kind: EdgeKind,
}
impl Edge {
/// Construct a new edge whose referent is `to` and is of the given `kind`.
pub fn new(to: ItemId, kind: EdgeKind) -> Edge {
Edge { to, kind }
}
}
impl From<Edge> for ItemId {
fn from(val: Edge) -> Self {
val.to
}
}
/// The kind of edge reference. This is useful when we wish to only consider
/// certain kinds of edges for a particular traversal or analysis.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum EdgeKind {
/// A generic, catch-all edge.
Generic,
/// An edge from a template declaration, to the definition of a named type
/// parameter. For example, the edge from `Foo<T>` to `T` in the following
/// snippet:
///
/// ```C++
/// template<typename T>
/// class Foo { };
/// ```
TemplateParameterDefinition,
/// An edge from a template instantiation to the template declaration that
/// is being instantiated. For example, the edge from `Foo<int>` to
/// to `Foo<T>`:
///
/// ```C++
/// template<typename T>
/// class Foo { };
///
/// using Bar = Foo<ant>;
/// ```
TemplateDeclaration,
/// An edge from a template instantiation to its template argument. For
/// example, `Foo<Bar>` to `Bar`:
///
/// ```C++
/// template<typename T>
/// class Foo { };
///
/// class Bar { };
///
/// using FooBar = Foo<Bar>;
/// ```
TemplateArgument,
/// An edge from a compound type to one of its base member types. For
/// example, the edge from `Bar` to `Foo`:
///
/// ```C++
/// class Foo { };
///
/// class Bar : public Foo { };
/// ```
BaseMember,
/// An edge from a compound type to the types of one of its fields. For
/// example, the edge from `Foo` to `int`:
///
/// ```C++
/// class Foo {
/// int x;
/// };
/// ```
Field,
/// An edge from an class or struct type to an inner type member. For
/// example, the edge from `Foo` to `Foo::Bar` here:
///
/// ```C++
/// class Foo {
/// struct Bar { };
/// };
/// ```
InnerType,
/// An edge from an class or struct type to an inner static variable. For
/// example, the edge from `Foo` to `Foo::BAR` here:
///
/// ```C++
/// class Foo {
/// static const char* BAR;
/// };
/// ```
InnerVar,
/// An edge from a class or struct type to one of its method functions. For
/// example, the edge from `Foo` to `Foo::bar`:
///
/// ```C++
/// class Foo {
/// bool bar(int x, int y);
/// };
/// ```
Method,
/// An edge from a class or struct type to one of its constructor
/// functions. For example, the edge from `Foo` to `Foo::Foo(int x, int y)`:
///
/// ```C++
/// class Foo {
/// int my_x;
/// int my_y;
///
/// public:
/// Foo(int x, int y);
/// };
/// ```
Constructor,
/// An edge from a class or struct type to its destructor function. For
/// example, the edge from `Doggo` to `Doggo::~Doggo()`:
///
/// ```C++
/// struct Doggo {
/// char* wow;
///
/// public:
/// ~Doggo();
/// };
/// ```
Destructor,
/// An edge from a function declaration to its return type. For example, the
/// edge from `foo` to `int`:
///
/// ```C++
/// int foo(char* string);
/// ```
FunctionReturn,
/// An edge from a function declaration to one of its parameter types. For
/// example, the edge from `foo` to `char*`:
///
/// ```C++
/// int foo(char* string);
/// ```
FunctionParameter,
/// An edge from a static variable to its type. For example, the edge from
/// `FOO` to `const char*`:
///
/// ```C++
/// static const char* FOO;
/// ```
VarType,
/// An edge from a non-templated alias or typedef to the referenced type.
TypeReference,
}
/// A predicate to allow visiting only sub-sets of the whole IR graph by
/// excluding certain edges from being followed by the traversal.
///
/// The predicate must return true if the traversal should follow this edge
/// and visit everything that is reachable through it.
pub type TraversalPredicate = for<'a> fn(&'a BindgenContext, Edge) -> bool;
/// A `TraversalPredicate` implementation that follows all edges, and therefore
/// traversals using this predicate will see the whole IR graph reachable from
/// the traversal's roots.
pub fn all_edges(_: &BindgenContext, _: Edge) -> bool {
true
}
/// A `TraversalPredicate` implementation that only follows
/// `EdgeKind::InnerType` edges, and therefore traversals using this predicate
/// will only visit the traversal's roots and their inner types. This is used
/// in no-recursive-allowlist mode, where inner types such as anonymous
/// structs/unions still need to be processed.
pub fn only_inner_type_edges(_: &BindgenContext, edge: Edge) -> bool {
edge.kind == EdgeKind::InnerType
}
/// A `TraversalPredicate` implementation that only follows edges to items that
/// are enabled for code generation. This lets us skip considering items for
/// which are not reachable from code generation.
pub fn codegen_edges(ctx: &BindgenContext, edge: Edge) -> bool {
let cc = &ctx.options().codegen_config;
match edge.kind {
EdgeKind::Generic => {
ctx.resolve_item(edge.to).is_enabled_for_codegen(ctx)
}
// We statically know the kind of item that non-generic edges can point
// to, so we don't need to actually resolve the item and check
// `Item::is_enabled_for_codegen`.
EdgeKind::TemplateParameterDefinition |
EdgeKind::TemplateArgument |
EdgeKind::TemplateDeclaration |
EdgeKind::BaseMember |
EdgeKind::Field |
EdgeKind::InnerType |
EdgeKind::FunctionReturn |
EdgeKind::FunctionParameter |
EdgeKind::VarType |
EdgeKind::TypeReference => cc.types(),
EdgeKind::InnerVar => cc.vars(),
EdgeKind::Method => cc.methods(),
EdgeKind::Constructor => cc.constructors(),
EdgeKind::Destructor => cc.destructors(),
}
}
/// The storage for the set of items that have been seen (although their
/// outgoing edges might not have been fully traversed yet) in an active
/// traversal.
pub trait TraversalStorage<'ctx> {
/// Construct a new instance of this TraversalStorage, for a new traversal.
fn new(ctx: &'ctx BindgenContext) -> Self;
/// Add the given item to the storage. If the item has never been seen
/// before, return `true`. Otherwise, return `false`.
///
/// The `from` item is the item from which we discovered this item, or is
/// `None` if this item is a root.
fn add(&mut self, from: Option<ItemId>, item: ItemId) -> bool;
}
impl<'ctx> TraversalStorage<'ctx> for ItemSet {
fn new(_: &'ctx BindgenContext) -> Self {
ItemSet::new()
}
fn add(&mut self, _: Option<ItemId>, item: ItemId) -> bool {
self.insert(item)
}
}
/// A `TraversalStorage` implementation that keeps track of how we first reached
/// each item. This is useful for providing debug assertions with meaningful
/// diagnostic messages about dangling items.
#[derive(Debug)]
pub struct Paths<'ctx>(BTreeMap<ItemId, ItemId>, &'ctx BindgenContext);
impl<'ctx> TraversalStorage<'ctx> for Paths<'ctx> {
fn new(ctx: &'ctx BindgenContext) -> Self {
Paths(BTreeMap::new(), ctx)
}
fn add(&mut self, from: Option<ItemId>, item: ItemId) -> bool {
let newly_discovered =
self.0.insert(item, from.unwrap_or(item)).is_none();
if self.1.resolve_item_fallible(item).is_none() {
let mut path = vec![];
let mut current = item;
loop {
let predecessor = *self.0.get(¤t).expect(
"We know we found this item id, so it must have a \
predecessor",
);
if predecessor == current {
break;
}
path.push(predecessor);
current = predecessor;
}
path.reverse();
panic!(
"Found reference to dangling id = {:?}\nvia path = {:?}",
item, path
);
}
newly_discovered
}
}
/// The queue of seen-but-not-yet-traversed items.
///
/// Using a FIFO queue with a traversal will yield a breadth-first traversal,
/// while using a LIFO queue will result in a depth-first traversal of the IR
/// graph.
pub trait TraversalQueue: Default {
/// Add a newly discovered item to the queue.
fn push(&mut self, item: ItemId);
/// Pop the next item to traverse, if any.
fn next(&mut self) -> Option<ItemId>;
}
impl TraversalQueue for Vec<ItemId> {
fn push(&mut self, item: ItemId) {
self.push(item);
}
fn next(&mut self) -> Option<ItemId> {
self.pop()
}
}
impl TraversalQueue for VecDeque<ItemId> {
fn push(&mut self, item: ItemId) {
self.push_back(item);
}
fn next(&mut self) -> Option<ItemId> {
self.pop_front()
}
}
/// Something that can receive edges from a `Trace` implementation.
pub trait Tracer {
/// Note an edge between items. Called from within a `Trace` implementation.
fn visit_kind(&mut self, item: ItemId, kind: EdgeKind);
/// A synonym for `tracer.visit_kind(item, EdgeKind::Generic)`.
fn visit(&mut self, item: ItemId) {
self.visit_kind(item, EdgeKind::Generic);
}
}
impl<F> Tracer for F
where
F: FnMut(ItemId, EdgeKind),
{
fn visit_kind(&mut self, item: ItemId, kind: EdgeKind) {
(*self)(item, kind)
}
}
/// Trace all of the outgoing edges to other items. Implementations should call
/// one of `tracer.visit(edge)` or `tracer.visit_kind(edge, EdgeKind::Whatever)`
/// for each of their outgoing edges.
pub trait Trace {
/// If a particular type needs extra information beyond what it has in
/// `self` and `context` to find its referenced items, its implementation
/// can define this associated type, forcing callers to pass the needed
/// information through.
type Extra;
/// Trace all of this item's outgoing edges to other items.
fn trace<T>(
&self,
context: &BindgenContext,
tracer: &mut T,
extra: &Self::Extra,
) where
T: Tracer;
}
/// An graph traversal of the transitive closure of references between items.
///
/// See `BindgenContext::allowlisted_items` for more information.
pub struct ItemTraversal<'ctx, Storage, Queue>
where
Storage: TraversalStorage<'ctx>,
Queue: TraversalQueue,
{
ctx: &'ctx BindgenContext,
/// The set of items we have seen thus far in this traversal.
seen: Storage,
/// The set of items that we have seen, but have yet to traverse.
queue: Queue,
/// The predicate that determines which edges this traversal will follow.
predicate: TraversalPredicate,
/// The item we are currently traversing.
currently_traversing: Option<ItemId>,
}
impl<'ctx, Storage, Queue> ItemTraversal<'ctx, Storage, Queue>
where
Storage: TraversalStorage<'ctx>,
Queue: TraversalQueue,
{
/// Begin a new traversal, starting from the given roots.
pub fn new<R>(
ctx: &'ctx BindgenContext,
roots: R,
predicate: TraversalPredicate,
) -> ItemTraversal<'ctx, Storage, Queue>
where
R: IntoIterator<Item = ItemId>,
{
let mut seen = Storage::new(ctx);
let mut queue = Queue::default();
for id in roots {
seen.add(None, id);
queue.push(id);
}
ItemTraversal {
ctx,
seen,
queue,
predicate,
currently_traversing: None,
}
}
}
impl<'ctx, Storage, Queue> Tracer for ItemTraversal<'ctx, Storage, Queue>
where
Storage: TraversalStorage<'ctx>,
Queue: TraversalQueue,
{
fn visit_kind(&mut self, item: ItemId, kind: EdgeKind) {
let edge = Edge::new(item, kind);
if !(self.predicate)(self.ctx, edge) {
return;
}
let is_newly_discovered =
self.seen.add(self.currently_traversing, item);
if is_newly_discovered {
self.queue.push(item)
}
}
}
impl<'ctx, Storage, Queue> Iterator for ItemTraversal<'ctx, Storage, Queue>
where
Storage: TraversalStorage<'ctx>,
Queue: TraversalQueue,
{
type Item = ItemId;
fn next(&mut self) -> Option<Self::Item> {
let id = self.queue.next()?;
let newly_discovered = self.seen.add(None, id);
debug_assert!(
!newly_discovered,
"should have already seen anything we get out of our queue"
);
debug_assert!(
self.ctx.resolve_item_fallible(id).is_some(),
"should only get IDs of actual items in our context during traversal"
);
self.currently_traversing = Some(id);
id.trace(self.ctx, self, &());
self.currently_traversing = None;
Some(id)
}
}
/// An iterator to find any dangling items.
///
/// See `BindgenContext::assert_no_dangling_item_traversal` for more
/// information.
pub type AssertNoDanglingItemsTraversal<'ctx> =
ItemTraversal<'ctx, Paths<'ctx>, VecDeque<ItemId>>;