symphonia_bundle_mp3/
synthesis.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
// Symphonia
// Copyright (c) 2019-2022 The Project Symphonia Developers.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.

//! The `synthesis` module implements the polyphase synthesis filterbank of the MPEG audio standard.

/// Synthesis window D[i], defined in Table B.3 of ISO/IEC 11172-3.
#[allow(clippy::unreadable_literal)]
#[rustfmt::skip]
const SYNTHESIS_D: [f32; 512] = [
     0.000000000, -0.000015259, -0.000015259, -0.000015259,
    -0.000015259, -0.000015259, -0.000015259, -0.000030518,
    -0.000030518, -0.000030518, -0.000030518, -0.000045776,
    -0.000045776, -0.000061035, -0.000061035, -0.000076294,
    -0.000076294, -0.000091553, -0.000106812, -0.000106812,
    -0.000122070, -0.000137329, -0.000152588, -0.000167847,
    -0.000198364, -0.000213623, -0.000244141, -0.000259399,
    -0.000289917, -0.000320435, -0.000366211, -0.000396729,
    -0.000442505, -0.000473022, -0.000534058, -0.000579834,
    -0.000625610, -0.000686646, -0.000747681, -0.000808716,
    -0.000885010, -0.000961304, -0.001037598, -0.001113892,
    -0.001205444, -0.001296997, -0.001388550, -0.001480103,
    -0.001586914, -0.001693726, -0.001785278, -0.001907349,
    -0.002014160, -0.002120972, -0.002243042, -0.002349854,
    -0.002456665, -0.002578735, -0.002685547, -0.002792358,
    -0.002899170, -0.002990723, -0.003082275, -0.003173828,
     0.003250122,  0.003326416,  0.003387451,  0.003433228,
     0.003463745,  0.003479004,  0.003479004,  0.003463745,
     0.003417969,  0.003372192,  0.003280640,  0.003173828,
     0.003051758,  0.002883911,  0.002700806,  0.002487183,
     0.002227783,  0.001937866,  0.001617432,  0.001266479,
     0.000869751,  0.000442505, -0.000030518, -0.000549316,
    -0.001098633, -0.001693726, -0.002334595, -0.003005981,
    -0.003723145, -0.004486084, -0.005294800, -0.006118774,
    -0.007003784, -0.007919312, -0.008865356, -0.009841919,
    -0.010848999, -0.011886597, -0.012939453, -0.014022827,
    -0.015121460, -0.016235352, -0.017349243, -0.018463135,
    -0.019577026, -0.020690918, -0.021789551, -0.022857666,
    -0.023910522, -0.024932861, -0.025909424, -0.026840210,
    -0.027725220, -0.028533936, -0.029281616, -0.029937744,
    -0.030532837, -0.031005859, -0.031387329, -0.031661987,
    -0.031814575, -0.031845093, -0.031738281, -0.031478882,
     0.031082153,  0.030517578,  0.029785156,  0.028884888,
     0.027801514,  0.026535034,  0.025085449,  0.023422241,
     0.021575928,  0.019531250,  0.017257690,  0.014801025,
     0.012115479,  0.009231567,  0.006134033,  0.002822876,
    -0.000686646, -0.004394531, -0.008316040, -0.012420654,
    -0.016708374, -0.021179199, -0.025817871, -0.030609131,
    -0.035552979, -0.040634155, -0.045837402, -0.051132202,
    -0.056533813, -0.061996460, -0.067520142, -0.073059082,
    -0.078628540, -0.084182739, -0.089706421, -0.095169067,
    -0.100540161, -0.105819702, -0.110946655, -0.115921021,
    -0.120697021, -0.125259399, -0.129562378, -0.133590698,
    -0.137298584, -0.140670776, -0.143676758, -0.146255493,
    -0.148422241, -0.150115967, -0.151306152, -0.151962280,
    -0.152069092, -0.151596069, -0.150497437, -0.148773193,
    -0.146362305, -0.143264771, -0.139450073, -0.134887695,
    -0.129577637, -0.123474121, -0.116577148, -0.108856201,
     0.100311279,  0.090927124,  0.080688477,  0.069595337,
     0.057617187,  0.044784546,  0.031082153,  0.016510010,
     0.001068115, -0.015228271, -0.032379150, -0.050354004,
    -0.069168091, -0.088775635, -0.109161377, -0.130310059,
    -0.152206421, -0.174789429, -0.198059082, -0.221984863,
    -0.246505737, -0.271591187, -0.297210693, -0.323318481,
    -0.349868774, -0.376800537, -0.404083252, -0.431655884,
    -0.459472656, -0.487472534, -0.515609741, -0.543823242,
    -0.572036743, -0.600219727, -0.628295898, -0.656219482,
    -0.683914185, -0.711318970, -0.738372803, -0.765029907,
    -0.791213989, -0.816864014, -0.841949463, -0.866363525,
    -0.890090942, -0.913055420, -0.935195923, -0.956481934,
    -0.976852417, -0.996246338, -1.014617920, -1.031936646,
    -1.048156738, -1.063217163, -1.077117920, -1.089782715,
    -1.101211548, -1.111373901, -1.120223999, -1.127746582,
    -1.133926392, -1.138763428, -1.142211914, -1.144287109,
     1.144989014,  1.144287109,  1.142211914,  1.138763428,
     1.133926392,  1.127746582,  1.120223999,  1.111373901,
     1.101211548,  1.089782715,  1.077117920,  1.063217163,
     1.048156738,  1.031936646,  1.014617920,  0.996246338,
     0.976852417,  0.956481934,  0.935195923,  0.913055420,
     0.890090942,  0.866363525,  0.841949463,  0.816864014,
     0.791213989,  0.765029907,  0.738372803,  0.711318970,
     0.683914185,  0.656219482,  0.628295898,  0.600219727,
     0.572036743,  0.543823242,  0.515609741,  0.487472534,
     0.459472656,  0.431655884,  0.404083252,  0.376800537,
     0.349868774,  0.323318481,  0.297210693,  0.271591187,
     0.246505737,  0.221984863,  0.198059082,  0.174789429,
     0.152206421,  0.130310059,  0.109161377,  0.088775635,
     0.069168091,  0.050354004,  0.032379150,  0.015228271,
    -0.001068115, -0.016510010, -0.031082153, -0.044784546,
    -0.057617187, -0.069595337, -0.080688477, -0.090927124,
     0.100311279,  0.108856201,  0.116577148,  0.123474121,
     0.129577637,  0.134887695,  0.139450073,  0.143264771,
     0.146362305,  0.148773193,  0.150497437,  0.151596069,
     0.152069092,  0.151962280,  0.151306152,  0.150115967,
     0.148422241,  0.146255493,  0.143676758,  0.140670776,
     0.137298584,  0.133590698,  0.129562378,  0.125259399,
     0.120697021,  0.115921021,  0.110946655,  0.105819702,
     0.100540161,  0.095169067,  0.089706421,  0.084182739,
     0.078628540,  0.073059082,  0.067520142,  0.061996460,
     0.056533813,  0.051132202,  0.045837402,  0.040634155,
     0.035552979,  0.030609131,  0.025817871,  0.021179199,
     0.016708374,  0.012420654,  0.008316040,  0.004394531,
     0.000686646, -0.002822876, -0.006134033, -0.009231567,
    -0.012115479, -0.014801025, -0.017257690, -0.019531250,
    -0.021575928, -0.023422241, -0.025085449, -0.026535034,
    -0.027801514, -0.028884888, -0.029785156, -0.030517578,
     0.031082153,  0.031478882,  0.031738281,  0.031845093,
     0.031814575,  0.031661987,  0.031387329,  0.031005859,
     0.030532837,  0.029937744,  0.029281616,  0.028533936,
     0.027725220,  0.026840210,  0.025909424,  0.024932861,
     0.023910522,  0.022857666,  0.021789551,  0.020690918,
     0.019577026,  0.018463135,  0.017349243,  0.016235352,
     0.015121460,  0.014022827,  0.012939453,  0.011886597,
     0.010848999,  0.009841919,  0.008865356,  0.007919312,
     0.007003784,  0.006118774,  0.005294800,  0.004486084,
     0.003723145,  0.003005981,  0.002334595,  0.001693726,
     0.001098633,  0.000549316,  0.000030518, -0.000442505,
    -0.000869751, -0.001266479, -0.001617432, -0.001937866,
    -0.002227783, -0.002487183, -0.002700806, -0.002883911,
    -0.003051758, -0.003173828, -0.003280640, -0.003372192,
    -0.003417969, -0.003463745, -0.003479004, -0.003479004,
    -0.003463745, -0.003433228, -0.003387451, -0.003326416,
     0.003250122,  0.003173828,  0.003082275,  0.002990723,
     0.002899170,  0.002792358,  0.002685547,  0.002578735,
     0.002456665,  0.002349854,  0.002243042,  0.002120972,
     0.002014160,  0.001907349,  0.001785278,  0.001693726,
     0.001586914,  0.001480103,  0.001388550,  0.001296997,
     0.001205444,  0.001113892,  0.001037598,  0.000961304,
     0.000885010,  0.000808716,  0.000747681,  0.000686646,
     0.000625610,  0.000579834,  0.000534058,  0.000473022,
     0.000442505,  0.000396729,  0.000366211,  0.000320435,
     0.000289917,  0.000259399,  0.000244141,  0.000213623,
     0.000198364,  0.000167847,  0.000152588,  0.000137329,
     0.000122070,  0.000106812,  0.000106812,  0.000091553,
     0.000076294,  0.000076294,  0.000061035,  0.000061035,
     0.000045776,  0.000045776,  0.000030518,  0.000030518,
     0.000030518,  0.000030518,  0.000015259,  0.000015259,
     0.000015259,  0.000015259,  0.000015259,  0.000015259,
];

/// `SynthesisState` maintains the persistant state of sub-band synthesis.
pub struct SynthesisState {
    v_vec: [[f32; 64]; 16],
    v_front: usize,
}

impl Default for SynthesisState {
    fn default() -> Self {
        SynthesisState { v_vec: [[0f32; 64]; 16], v_front: 0 }
    }
}

/// Sub-band synthesis transforms 32 sub-band blocks containing 18 time-domain samples each into
/// 18 blocks of 32 PCM audio samples.
pub fn synthesis(state: &mut SynthesisState, n_frames: usize, in_samples: &[f32], out: &mut [f32]) {
    let mut s_vec = [0f32; 32];
    let mut d_vec = [0f32; 32];

    assert!(in_samples.len() == 32 * n_frames);

    // There are 18 synthesized PCM sample blocks.
    for b in 0..n_frames {
        // First, select the b-th sample from each of the 32 sub-bands, and place them in the s
        // vector, s_vec.
        for i in 0..32 {
            s_vec[i] = in_samples[n_frames * i + b];
        }

        // Get the front slot of the v_vec FIFO.
        let v_vec = &mut state.v_vec[state.v_front];

        // Matrixing is performed next. As per the standard, matrixing would require 2048
        // multiplications per sub-band! However, following the method by Konstantinides
        // published in [1], it is possible to achieve the same result through the use of a 32-point
        // DCT followed by some reconstruction.
        //
        // It should be noted that this is a deceptively simple solution. It is instructive to
        // derive the algorithm before getting to the implementation to better understand what is
        // happening, and where the edge-cases are.
        //
        // First, there are a few key observations to this approach:
        //
        //     1) The "matrixing" operation as per the standard is simply a 32-point MDCT. Note that
        //        an N-point MDCT produces a 2N-point output.
        //
        //     2) The output of the MDCT contains repeated blocks of samples. If the result of a
        //        MDCT defined as is X[0..64), then:
        //
        //          1) X(16.. 0] =  X(48..32]
        //          2) X[48..64) = -X[16..32)
        //
        //        Corollary: Only points [16..48) of the MDCT are actually required! All other
        //                   points are redundant.
        //
        //      3) Points [16..48) of the MDCT can be mapped from a 32-point DCT of the input
        //         vector thus allowing the use of an efficient DCT algorithm.
        //
        // The mappings above can be found graphically by plotting each row of the cosine
        // coefficient matricies of both the DCT and MDCT side-by side. The mapping becomes readily
        // apparent, and so too do the exceptions.
        //
        // Using the observations above, if we apply a 32-point DCT transform to the input vector,
        // s_vec, and place the output in the DCT output vector, d_vec, we obtain the plot labelled
        // d_vec below.
        //
        // Next, assuming the 32-point MDCT output vector is denoted v_vec. Map the samples from the
        // 32-point DCT, d_vec[0..32], to points v_vec[0..16], v_vec[16..32], v_vec[32..48], and
        // v_vec[48..64] of the 32-point MDCT. The result is depicted graphically in the plot
        // labelled v_vec below.
        //
        // d_vec        0              16             32
        //              .               .              .
        //              .     +---------+   +----------+
        //              +-----+    A    | /     B      |
        //              +---------------+--------------+
        //
        // v_vec        0              16             32             48              64
        //              .               .              .              .               .
        //              .   +-----------+              .              .               .
        //              . /      B      |              .              .               .
        //              +---------------+--------------+--------------+---------------+
        //              .               |     -B     / |   -A   +-----+-----+   -A    |
        //              .               +----------+   +--------+     .     +---------+
        //
        // Note however that the mappings in the previous step have exceptions for boundary samples.
        // These exceptions can be seen when plotting the coefficient matricies as mentioned above.
        // The mapping for boundary samples are as follows:
        //
        //     1) v_vec[ 0] =  d_vec[16]
        //     2) v_vec[32] = -d_vec[16]
        //     3) v_vec[48] = -d_vec[ 0]
        //     4) v_vec[16] =  0.0
        //
        // The final algorithm written below performs the copy and flip operations of each 16 sample
        // quadrant in seperate loops to assist auto-vectorization. The boundary samples are
        // excluded from these loops and handled manually afterwards.
        //
        // [1] K. Konstantinides, "Fast subband filtering in MPEG audio coding", Signal Processing
        // Letters IEEE, vol. 1, no. 2, pp. 26-28, 1994.
        //
        // https://ieeexplore.ieee.org/abstract/document/300309
        dct32(&s_vec, &mut d_vec);

        for (d, s) in v_vec[48 - 15..48 + 0].iter_mut().rev().zip(&d_vec[1..16]) {
            *d = -s;
        }
        for (d, s) in v_vec[48 + 1..48 + 16].iter_mut().zip(&d_vec[1..16]) {
            *d = -s;
        }
        for (d, s) in v_vec[16 + 1..16 + 16].iter_mut().rev().zip(&d_vec[17..32]) {
            *d = -s;
        }
        for (d, s) in v_vec[1..16].iter_mut().zip(&d_vec[17..32]) {
            *d = *s;
        }

        v_vec[0] = d_vec[16];
        v_vec[32] = -d_vec[16];
        v_vec[48] = -d_vec[0];
        v_vec[16] = 0.0;

        // Next, as per the specification, build a vector, u_vec, by iterating over the 16 slots in
        // v_vec, and copying the first 32 samples of EVEN numbered v_vec slots, and the last 32
        // samples of ODD numbered v_vec slots sequentially into u_vec.
        //
        // For example, given:
        //
        //        0   32   64   96  128  160  192  224  256           896  928   960  992 1024
        //        +----+----+----+----+----+----+----+----+ . . . . . . +----+-----+----+----+
        // v_vec  | a  : b  | c  : d  | e  : f  | g  | h  | . . . . . . | w  : x   | y  : z  |
        //        +----+----+----+----+----+----+----+----+ . . . . . . +----+-----+----+----+
        //        [ Slot 0 ][ Slot 1 ][ Slot 2 ][ Slot 3 ]  . . . . . . [ Slot 14 ][ Slot 15 ]
        //
        // Assuming v_front, the front of the FIFO, is slot 0, then u_vec is filled as follows:
        //
        //        0   32   64   96  128       448  480  512
        //        +----+----+----+----+ . . . . +----+----+
        // u_vec  | a  | d  | e  | h  | . . . . | w  | z  |
        //        +----+----+----+----+ . . . . +----+----+
        //
        // Finally, generate the 32 sample PCM blocks. Assuming s[i] is sample i of a PCM sample
        // block, the following equation governs sample generation:
        //
        //         16
        // s[i] = SUM { u_vec[32*j + i] * D[32*j + i] }    for i=0..32
        //        j=0
        //
        // where:
        //     D[0..512] is the synthesis window provided in table B.3 of ISO/IEC 11172-3.
        //
        // In words, u_vec is logically partitioned into 16 slots of 32 samples each (i.e.,
        // slot 0 spans u_vec[0..32], slot 1 spans u_vec[32..64], and so on). Then, the i-th
        // sample in the PCM block is the summation of the i-th sample in each of the 16 u_vec
        // slots after being multiplied by the synthesis window.
        //
        // But wait! This is VERY inefficient!
        //
        // If PCM sample generation is reframed such that instead of iterating j for every i, i is
        // iterated through for every j, then it is possible to iterate straight-through
        // v_vec[j][0..32] and D[32*j..(32*j) + 32] while multiplying and accumulating the
        // intermediary calculations in a zeroed output vector, o_vec. After iterating over every j,
        // o_vec can be copied to the output sample buffer, out, in one block.
        //
        // Using this method, there is no reason to build u_vec and cache locality is greatly
        // improved.
        let mut o_vec = [0f32; 32];

        for j in 0..8 {
            let v_start = state.v_front + (j << 1);

            let v0 = &state.v_vec[(v_start + 0) & 0xf][0..32];
            let v1 = &state.v_vec[(v_start + 1) & 0xf][32..64];

            let k = j << 6;

            for i in 0..32 {
                o_vec[i] += v0[i] * SYNTHESIS_D[k + i + 0];
                o_vec[i] += v1[i] * SYNTHESIS_D[k + i + 32];
            }
        }

        // Clamp and copy the PCM samples from o_vec to the output buffer.
        let offset = b << 5;

        for (o, s) in out[offset..offset + 32].iter_mut().zip(&o_vec) {
            *o = s.clamp(-1.0, 1.0);
        }

        // Shift the v_vec FIFO. The value v_front is the index of the 64 sample slot in v_vec
        // that will be overwritten next iteration. Conversely, that makes it the front of the
        // FIFO for the purpose of building u_vec. We would like to overwrite the oldest slot,
        // so we subtract 1 via a wrapping addition to move the front backwards by 1 slot,
        // effectively overwriting the oldest slot with the soon-to-be newest.
        state.v_front = (state.v_front + 15) & 0xf;
    }
}

/// Performs a 32-point Discrete Cosine Transform (DCT) using Byeong Gi Lee's fast algorithm
/// published in article [1] without inverse square-root 2 scaling.
///
/// This is a straight-forward implemention of the recursive algorithm, flattened into a single
/// function body to avoid the overhead of function calls and the stack.
///
/// [1] B.G. Lee, "A new algorithm to compute the discrete cosine transform", IEEE Transactions
/// on Acoustics, Speech, and Signal Processing, vol. 32, no. 6, pp. 1243-1245, 1984.
///
/// https://ieeexplore.ieee.org/document/1164443
fn dct32(x: &[f32; 32], y: &mut [f32; 32]) {
    // The following tables are pre-computed values of the the following equation:
    //
    // c[i] = 1.0 / [2.0 * cos((PI / N) * (2*i + 1))]    for i = 0..N/2
    //
    // where N = [32, 16, 8, 4, 2], for COS_16, COS8, COS_4, and COS_2, respectively.
    const COS_16: [f32; 16] = [
        0.500_602_998_235_196_3,  // i= 0
        0.505_470_959_897_543_6,  // i= 1
        0.515_447_309_922_624_6,  // i= 2
        0.531_042_591_089_784_1,  // i= 3
        0.553_103_896_034_444_5,  // i= 4
        0.582_934_968_206_133_9,  // i= 5
        0.622_504_123_035_664_8,  // i= 6
        0.674_808_341_455_005_7,  // i= 7
        0.744_536_271_002_298_6,  // i= 8
        0.839_349_645_415_526_8,  // i= 9
        0.972_568_237_861_960_8,  // i=10
        1.169_439_933_432_884_7,  // i=11
        1.484_164_616_314_166_2,  // i=12
        2.057_781_009_953_410_8,  // i=13
        3.407_608_418_468_719_0,  // i=14
        10.190_008_123_548_032_9, // i=15
    ];

    const COS_8: [f32; 8] = [
        0.502_419_286_188_155_7, // i=0
        0.522_498_614_939_688_9, // i=1
        0.566_944_034_816_357_7, // i=2
        0.646_821_783_359_990_1, // i=3
        0.788_154_623_451_250_2, // i=4
        1.060_677_685_990_347_1, // i=5
        1.722_447_098_238_334_2, // i=6
        5.101_148_618_689_155_3, // i=7
    ];

    const COS_4: [f32; 4] = [
        0.509_795_579_104_159_2, // i=0
        0.601_344_886_935_045_3, // i=1
        0.899_976_223_136_415_6, // i=2
        2.562_915_447_741_505_5, // i=3
    ];

    const COS_2: [f32; 2] = [
        0.541_196_100_146_197_0, // i=0
        1.306_562_964_876_376_4, // i=1
    ];

    const COS_1: f32 = 0.707_106_781_186_547_5;

    // 16-point DCT decomposition
    let mut t0 = [
        (x[0] + x[32 - 1]),
        (x[1] + x[32 - 2]),
        (x[2] + x[32 - 3]),
        (x[3] + x[32 - 4]),
        (x[4] + x[32 - 5]),
        (x[5] + x[32 - 6]),
        (x[6] + x[32 - 7]),
        (x[7] + x[32 - 8]),
        (x[8] + x[32 - 9]),
        (x[9] + x[32 - 10]),
        (x[10] + x[32 - 11]),
        (x[11] + x[32 - 12]),
        (x[12] + x[32 - 13]),
        (x[13] + x[32 - 14]),
        (x[14] + x[32 - 15]),
        (x[15] + x[32 - 16]),
        (x[0] - x[32 - 1]) * COS_16[0],
        (x[1] - x[32 - 2]) * COS_16[1],
        (x[2] - x[32 - 3]) * COS_16[2],
        (x[3] - x[32 - 4]) * COS_16[3],
        (x[4] - x[32 - 5]) * COS_16[4],
        (x[5] - x[32 - 6]) * COS_16[5],
        (x[6] - x[32 - 7]) * COS_16[6],
        (x[7] - x[32 - 8]) * COS_16[7],
        (x[8] - x[32 - 9]) * COS_16[8],
        (x[9] - x[32 - 10]) * COS_16[9],
        (x[10] - x[32 - 11]) * COS_16[10],
        (x[11] - x[32 - 12]) * COS_16[11],
        (x[12] - x[32 - 13]) * COS_16[12],
        (x[13] - x[32 - 14]) * COS_16[13],
        (x[14] - x[32 - 15]) * COS_16[14],
        (x[15] - x[32 - 16]) * COS_16[15],
    ];

    // 16-point DCT decomposition of t0[0..16]
    {
        let mut t1 = [
            (t0[0] + t0[16 - 1]),
            (t0[1] + t0[16 - 2]),
            (t0[2] + t0[16 - 3]),
            (t0[3] + t0[16 - 4]),
            (t0[4] + t0[16 - 5]),
            (t0[5] + t0[16 - 6]),
            (t0[6] + t0[16 - 7]),
            (t0[7] + t0[16 - 8]),
            (t0[0] - t0[16 - 1]) * COS_8[0],
            (t0[1] - t0[16 - 2]) * COS_8[1],
            (t0[2] - t0[16 - 3]) * COS_8[2],
            (t0[3] - t0[16 - 4]) * COS_8[3],
            (t0[4] - t0[16 - 5]) * COS_8[4],
            (t0[5] - t0[16 - 6]) * COS_8[5],
            (t0[6] - t0[16 - 7]) * COS_8[6],
            (t0[7] - t0[16 - 8]) * COS_8[7],
        ];

        // 8-point DCT decomposition of t1[0..8]
        {
            let mut t2 = [
                (t1[0] + t1[8 - 1]),
                (t1[1] + t1[8 - 2]),
                (t1[2] + t1[8 - 3]),
                (t1[3] + t1[8 - 4]),
                (t1[0] - t1[8 - 1]) * COS_4[0],
                (t1[1] - t1[8 - 2]) * COS_4[1],
                (t1[2] - t1[8 - 3]) * COS_4[2],
                (t1[3] - t1[8 - 4]) * COS_4[3],
            ];

            // 4-point DCT decomposition of t2[0..4]
            {
                let mut t3 = [
                    (t2[0] + t2[4 - 1]),
                    (t2[1] + t2[4 - 2]),
                    (t2[0] - t2[4 - 1]) * COS_2[0],
                    (t2[1] - t2[4 - 2]) * COS_2[1],
                ];

                // 2-point DCT decomposition of t3[0..2]
                {
                    let t4 = [(t3[0] + t3[2 - 1]), (t3[0] - t3[2 - 1]) * COS_1];

                    t3[0] = t4[0];
                    t3[1] = t4[1];
                }

                // 2-point DCT decomposition of t3[2..4]
                {
                    let t4 = [(t3[2] + t3[4 - 1]), (t3[2] - t3[4 - 1]) * COS_1];

                    t3[2 + 0] = t4[0];
                    t3[2 + 1] = t4[1];
                }

                t2[0 + 0] = t3[0];
                t2[0 + 1] = t3[2] + t3[3];
                t2[0 + 2] = t3[1];
                t2[0 + 3] = t3[3];
            }

            // 4-point DCT decomposition of t2[4..8]
            {
                let mut t3 = [
                    (t2[4] + t2[8 - 1]),
                    (t2[5] + t2[8 - 2]),
                    (t2[4] - t2[8 - 1]) * COS_2[0],
                    (t2[5] - t2[8 - 2]) * COS_2[1],
                ];

                // 2-point DCT decomposition of t3[0..2]
                {
                    let t4 = [(t3[0] + t3[2 - 1]), (t3[0] - t3[2 - 1]) * COS_1];

                    t3[0] = t4[0];
                    t3[1] = t4[1];
                }

                // 2-point DCT decomposition of t3[2..4]
                {
                    let t4 = [(t3[2] + t3[4 - 1]), (t3[2] - t3[4 - 1]) * COS_1];

                    t3[2 + 0] = t4[0];
                    t3[2 + 1] = t4[1];
                }

                t2[4 + 0] = t3[0];
                t2[4 + 1] = t3[2] + t3[3];
                t2[4 + 2] = t3[1];
                t2[4 + 3] = t3[3];
            }

            // Recombine t2[0..4] and t2[4..8], overwriting t1[0..8].
            for i in 0..3 {
                t1[(i << 1) + 0] = t2[i];
                t1[(i << 1) + 1] = t2[4 + i] + t2[4 + i + 1];
            }

            t1[8 - 2] = t2[4 - 1];
            t1[8 - 1] = t2[8 - 1];
        }

        // 8-point DCT decomposition of t1[8..16]
        {
            let mut t2 = [
                (t1[8] + t1[16 - 1]),
                (t1[9] + t1[16 - 2]),
                (t1[10] + t1[16 - 3]),
                (t1[11] + t1[16 - 4]),
                (t1[8] - t1[16 - 1]) * COS_4[0],
                (t1[9] - t1[16 - 2]) * COS_4[1],
                (t1[10] - t1[16 - 3]) * COS_4[2],
                (t1[11] - t1[16 - 4]) * COS_4[3],
            ];

            // 4-point DCT decomposition of t2[0..4]
            {
                let mut t3 = [
                    (t2[0] + t2[4 - 1]),
                    (t2[1] + t2[4 - 2]),
                    (t2[0] - t2[4 - 1]) * COS_2[0],
                    (t2[1] - t2[4 - 2]) * COS_2[1],
                ];

                // 2-point DCT decomposition of t3[0..2]
                {
                    let t4 = [(t3[0] + t3[2 - 1]), (t3[0] - t3[2 - 1]) * COS_1];

                    t3[0] = t4[0];
                    t3[1] = t4[1];
                }

                // 2-point DCT decomposition of t3[2..4]
                {
                    let t4 = [(t3[2] + t3[4 - 1]), (t3[2] - t3[4 - 1]) * COS_1];

                    t3[2 + 0] = t4[0];
                    t3[2 + 1] = t4[1];
                }

                t2[0 + 0] = t3[0];
                t2[0 + 1] = t3[2] + t3[3];
                t2[0 + 2] = t3[1];
                t2[0 + 3] = t3[3];
            }

            // 4-point DCT decomposition of t2[4..8]
            {
                let mut t3 = [
                    (t2[4] + t2[8 - 1]),
                    (t2[5] + t2[8 - 2]),
                    (t2[4] - t2[8 - 1]) * COS_2[0],
                    (t2[5] - t2[8 - 2]) * COS_2[1],
                ];

                // 2-point DCT decomposition of t3[0..2]
                {
                    let t4 = [(t3[0] + t3[2 - 1]), (t3[0] - t3[2 - 1]) * COS_1];

                    t3[0] = t4[0];
                    t3[1] = t4[1];
                }

                // 2-point DCT decomposition of t3[2..4]
                {
                    let t4 = [(t3[2] + t3[4 - 1]), (t3[2] - t3[4 - 1]) * COS_1];

                    t3[2 + 0] = t4[0];
                    t3[2 + 1] = t4[1];
                }

                t2[4 + 0] = t3[0];
                t2[4 + 1] = t3[2] + t3[3];
                t2[4 + 2] = t3[1];
                t2[4 + 3] = t3[3];
            }

            // Recombine t2[0..4] and t2[4..8], overwriting t1[8..16].
            for i in 0..3 {
                t1[8 + (i << 1) + 0] = t2[i];
                t1[8 + (i << 1) + 1] = t2[4 + i] + t2[4 + i + 1];
            }

            t1[16 - 2] = t2[4 - 1];
            t1[16 - 1] = t2[8 - 1];
        }

        // Recombine t1[0..8] and t1[8..16], overwriting t0[0..16].
        for i in 0..7 {
            t0[(i << 1) + 0] = t1[i];
            t0[(i << 1) + 1] = t1[8 + i] + t1[8 + i + 1];
        }

        t0[16 - 2] = t1[8 - 1];
        t0[16 - 1] = t1[16 - 1];
    }

    // 16-point DCT decomposition of t0[16..32]
    {
        let mut t1 = [
            (t0[16] + t0[32 - 1]),
            (t0[17] + t0[32 - 2]),
            (t0[18] + t0[32 - 3]),
            (t0[19] + t0[32 - 4]),
            (t0[20] + t0[32 - 5]),
            (t0[21] + t0[32 - 6]),
            (t0[22] + t0[32 - 7]),
            (t0[23] + t0[32 - 8]),
            (t0[16] - t0[32 - 1]) * COS_8[0],
            (t0[17] - t0[32 - 2]) * COS_8[1],
            (t0[18] - t0[32 - 3]) * COS_8[2],
            (t0[19] - t0[32 - 4]) * COS_8[3],
            (t0[20] - t0[32 - 5]) * COS_8[4],
            (t0[21] - t0[32 - 6]) * COS_8[5],
            (t0[22] - t0[32 - 7]) * COS_8[6],
            (t0[23] - t0[32 - 8]) * COS_8[7],
        ];

        // 8-point DCT decomposition of t1[0..8]
        {
            let mut t2 = [
                (t1[0] + t1[8 - 1]),
                (t1[1] + t1[8 - 2]),
                (t1[2] + t1[8 - 3]),
                (t1[3] + t1[8 - 4]),
                (t1[0] - t1[8 - 1]) * COS_4[0],
                (t1[1] - t1[8 - 2]) * COS_4[1],
                (t1[2] - t1[8 - 3]) * COS_4[2],
                (t1[3] - t1[8 - 4]) * COS_4[3],
            ];

            // 4-point DCT decomposition of t2[0..4]
            {
                let mut t3 = [
                    (t2[0] + t2[4 - 1]),
                    (t2[1] + t2[4 - 2]),
                    (t2[0] - t2[4 - 1]) * COS_2[0],
                    (t2[1] - t2[4 - 2]) * COS_2[1],
                ];

                // 2-point DCT decomposition of t3[0..2]
                {
                    let t4 = [(t3[0] + t3[2 - 1]), (t3[0] - t3[2 - 1]) * COS_1];

                    t3[0] = t4[0];
                    t3[1] = t4[1];
                }

                // 2-point DCT decomposition of t3[2..4]
                {
                    let t4 = [(t3[2] + t3[4 - 1]), (t3[2] - t3[4 - 1]) * COS_1];

                    t3[2 + 0] = t4[0];
                    t3[2 + 1] = t4[1];
                }

                t2[0 + 0] = t3[0];
                t2[0 + 1] = t3[2] + t3[3];
                t2[0 + 2] = t3[1];
                t2[0 + 3] = t3[3];
            }

            // 4-point DCT decomposition of t2[4..8]
            {
                let mut t3 = [
                    (t2[4] + t2[8 - 1]),
                    (t2[5] + t2[8 - 2]),
                    (t2[4] - t2[8 - 1]) * COS_2[0],
                    (t2[5] - t2[8 - 2]) * COS_2[1],
                ];

                // 2-point DCT decomposition of t3[0..2]
                {
                    let t4 = [(t3[0] + t3[2 - 1]), (t3[0] - t3[2 - 1]) * COS_1];

                    t3[0] = t4[0];
                    t3[1] = t4[1];
                }

                // 2-point DCT decomposition of t3[2..4]
                {
                    let t4 = [(t3[2] + t3[4 - 1]), (t3[2] - t3[4 - 1]) * COS_1];

                    t3[2 + 0] = t4[0];
                    t3[2 + 1] = t4[1];
                }

                t2[4 + 0] = t3[0];
                t2[4 + 1] = t3[2] + t3[3];
                t2[4 + 2] = t3[1];
                t2[4 + 3] = t3[3];
            }

            // Recombine t2[0..4] and t2[4..8], overwriting t1[0..8].
            for i in 0..3 {
                t1[(i << 1) + 0] = t2[i];
                t1[(i << 1) + 1] = t2[4 + i] + t2[4 + i + 1];
            }

            t1[8 - 2] = t2[4 - 1];
            t1[8 - 1] = t2[8 - 1];
        }

        // 8-point DCT decomposition of t1[8..16]
        {
            let mut t2 = [
                (t1[8] + t1[16 - 1]),
                (t1[9] + t1[16 - 2]),
                (t1[10] + t1[16 - 3]),
                (t1[11] + t1[16 - 4]),
                (t1[8] - t1[16 - 1]) * COS_4[0],
                (t1[9] - t1[16 - 2]) * COS_4[1],
                (t1[10] - t1[16 - 3]) * COS_4[2],
                (t1[11] - t1[16 - 4]) * COS_4[3],
            ];

            // 4-point DCT decomposition of t2[0..4]
            {
                let mut t3 = [
                    (t2[0] + t2[4 - 1]),
                    (t2[1] + t2[4 - 2]),
                    (t2[0] - t2[4 - 1]) * COS_2[0],
                    (t2[1] - t2[4 - 2]) * COS_2[1],
                ];

                // 2-point DCT decomposition of t3[0..2]
                {
                    let t4 = [(t3[0] + t3[2 - 1]), (t3[0] - t3[2 - 1]) * COS_1];

                    t3[0] = t4[0];
                    t3[1] = t4[1];
                }

                // 2-point DCT decomposition of t3[2..4]
                {
                    let t4 = [(t3[2] + t3[4 - 1]), (t3[2] - t3[4 - 1]) * COS_1];

                    t3[2 + 0] = t4[0];
                    t3[2 + 1] = t4[1];
                }

                t2[0 + 0] = t3[0];
                t2[0 + 1] = t3[2] + t3[3];
                t2[0 + 2] = t3[1];
                t2[0 + 3] = t3[3];
            }

            // 4-point DCT decomposition of t2[4..8]
            {
                let mut t3 = [
                    (t2[4] + t2[8 - 1]),
                    (t2[5] + t2[8 - 2]),
                    (t2[4] - t2[8 - 1]) * COS_2[0],
                    (t2[5] - t2[8 - 2]) * COS_2[1],
                ];

                // 2-point DCT decomposition of t3[0..2]
                {
                    let t4 = [(t3[0] + t3[2 - 1]), (t3[0] - t3[2 - 1]) * COS_1];

                    t3[0] = t4[0];
                    t3[1] = t4[1];
                }

                // 2-point DCT decomposition of t3[2..4]
                {
                    let t4 = [(t3[2] + t3[4 - 1]), (t3[2] - t3[4 - 1]) * COS_1];

                    t3[2 + 0] = t4[0];
                    t3[2 + 1] = t4[1];
                }

                t2[4 + 0] = t3[0];
                t2[4 + 1] = t3[2] + t3[3];
                t2[4 + 2] = t3[1];
                t2[4 + 3] = t3[3];
            }

            // Recombine t2[0..4] and t2[4..8], overwriting t1[8..16].
            for i in 0..3 {
                t1[8 + (i << 1) + 0] = t2[i];
                t1[8 + (i << 1) + 1] = t2[4 + i] + t2[4 + i + 1];
            }

            t1[16 - 2] = t2[4 - 1];
            t1[16 - 1] = t2[8 - 1];
        }

        // Recombine t1[0..8] and t1[8..16], overwriting t0[0..16].
        for i in 0..7 {
            t0[16 + (i << 1) + 0] = t1[i];
            t0[16 + (i << 1) + 1] = t1[8 + i] + t1[8 + i + 1];
        }

        t0[32 - 2] = t1[8 - 1];
        t0[32 - 1] = t1[16 - 1];
    }

    // Recombine t1[0..16] and t1[16..32] into y.
    for i in 0..15 {
        y[(i << 1) + 0] = t0[i];
        y[(i << 1) + 1] = t0[16 + i] + t0[16 + i + 1];
    }

    y[32 - 2] = t0[16 - 1];
    y[32 - 1] = t0[32 - 1];
}

#[cfg(test)]
mod tests {
    use super::dct32;
    use std::f64;

    fn dct32_analytical(x: &[f32; 32]) -> [f32; 32] {
        const PI_32: f64 = f64::consts::PI / 32.0;

        let mut result = [0f32; 32];
        for (i, item) in result.iter_mut().enumerate() {
            *item = x
                .iter()
                .enumerate()
                .map(|(j, &jtem)| jtem * (PI_32 * (i as f64) * ((j as f64) + 0.5)).cos() as f32)
                .sum();
        }

        result
    }

    #[test]
    fn verify_dct32() {
        const TEST_VECTOR: [f32; 32] = [
            0.1710, 0.1705, 0.3476, 0.1866, 0.4784, 0.6525, 0.2690, 0.9996, //
            0.1864, 0.7277, 0.1163, 0.6620, 0.0911, 0.3225, 0.1126, 0.5344, //
            0.7839, 0.9741, 0.8757, 0.5763, 0.5926, 0.2756, 0.1757, 0.6531, //
            0.7101, 0.7376, 0.1924, 0.0351, 0.8044, 0.2409, 0.9347, 0.9417, //
        ];

        let mut test_result = [0f32; 32];
        dct32(&TEST_VECTOR, &mut test_result);

        let actual_result = dct32_analytical(&TEST_VECTOR);
        for i in 0..32 {
            assert!((actual_result[i] - test_result[i]).abs() < 0.00001);
        }
    }
}