bindgen/ir/
function.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
//! Intermediate representation for C/C++ functions and methods.

use super::comp::MethodKind;
use super::context::{BindgenContext, TypeId};
use super::dot::DotAttributes;
use super::item::Item;
use super::traversal::{EdgeKind, Trace, Tracer};
use super::ty::TypeKind;
use crate::clang::{self, Attribute};
use crate::parse::{
    ClangItemParser, ClangSubItemParser, ParseError, ParseResult,
};
use clang_sys::{self, CXCallingConv};
use proc_macro2;
use quote;
use quote::TokenStreamExt;
use std::io;
use std::str::FromStr;

const RUST_DERIVE_FUNPTR_LIMIT: usize = 12;

/// What kind of a function are we looking at?
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum FunctionKind {
    /// A plain, free function.
    Function,
    /// A method of some kind.
    Method(MethodKind),
}

impl FunctionKind {
    /// Given a clang cursor, return the kind of function it represents, or
    /// `None` otherwise.
    pub fn from_cursor(cursor: &clang::Cursor) -> Option<FunctionKind> {
        // FIXME(emilio): Deduplicate logic with `ir::comp`.
        Some(match cursor.kind() {
            clang_sys::CXCursor_FunctionDecl => FunctionKind::Function,
            clang_sys::CXCursor_Constructor => {
                FunctionKind::Method(MethodKind::Constructor)
            }
            clang_sys::CXCursor_Destructor => {
                FunctionKind::Method(if cursor.method_is_virtual() {
                    MethodKind::VirtualDestructor {
                        pure_virtual: cursor.method_is_pure_virtual(),
                    }
                } else {
                    MethodKind::Destructor
                })
            }
            clang_sys::CXCursor_CXXMethod => {
                if cursor.method_is_virtual() {
                    FunctionKind::Method(MethodKind::Virtual {
                        pure_virtual: cursor.method_is_pure_virtual(),
                    })
                } else if cursor.method_is_static() {
                    FunctionKind::Method(MethodKind::Static)
                } else {
                    FunctionKind::Method(MethodKind::Normal)
                }
            }
            _ => return None,
        })
    }
}

/// The style of linkage
#[derive(Debug, Clone, Copy)]
pub enum Linkage {
    /// Externally visible and can be linked against
    External,
    /// Not exposed externally. 'static inline' functions will have this kind of linkage
    Internal,
}

/// A function declaration, with a signature, arguments, and argument names.
///
/// The argument names vector must be the same length as the ones in the
/// signature.
#[derive(Debug)]
pub struct Function {
    /// The name of this function.
    name: String,

    /// The mangled name, that is, the symbol.
    mangled_name: Option<String>,

    /// The id pointing to the current function signature.
    signature: TypeId,

    /// The doc comment on the function, if any.
    comment: Option<String>,

    /// The kind of function this is.
    kind: FunctionKind,

    /// The linkage of the function.
    linkage: Linkage,
}

impl Function {
    /// Construct a new function.
    pub fn new(
        name: String,
        mangled_name: Option<String>,
        signature: TypeId,
        comment: Option<String>,
        kind: FunctionKind,
        linkage: Linkage,
    ) -> Self {
        Function {
            name,
            mangled_name,
            signature,
            comment,
            kind,
            linkage,
        }
    }

    /// Get this function's name.
    pub fn name(&self) -> &str {
        &self.name
    }

    /// Get this function's name.
    pub fn mangled_name(&self) -> Option<&str> {
        self.mangled_name.as_deref()
    }

    /// Get this function's signature type.
    pub fn signature(&self) -> TypeId {
        self.signature
    }

    /// Get this function's comment.
    pub fn comment(&self) -> Option<&str> {
        self.comment.as_deref()
    }

    /// Get this function's kind.
    pub fn kind(&self) -> FunctionKind {
        self.kind
    }

    /// Get this function's linkage.
    pub fn linkage(&self) -> Linkage {
        self.linkage
    }
}

impl DotAttributes for Function {
    fn dot_attributes<W>(
        &self,
        _ctx: &BindgenContext,
        out: &mut W,
    ) -> io::Result<()>
    where
        W: io::Write,
    {
        if let Some(ref mangled) = self.mangled_name {
            let mangled: String =
                mangled.chars().flat_map(|c| c.escape_default()).collect();
            writeln!(
                out,
                "<tr><td>mangled name</td><td>{}</td></tr>",
                mangled
            )?;
        }

        Ok(())
    }
}

/// A valid rust ABI.
#[derive(Debug, Copy, Clone, Hash, Eq, PartialEq)]
pub enum Abi {
    /// The default C ABI.
    C,
    /// The "stdcall" ABI.
    Stdcall,
    /// The "fastcall" ABI.
    Fastcall,
    /// The "thiscall" ABI.
    ThisCall,
    /// The "vectorcall" ABI.
    Vectorcall,
    /// The "aapcs" ABI.
    Aapcs,
    /// The "win64" ABI.
    Win64,
    /// The "C-unwind" ABI.
    CUnwind,
}

impl FromStr for Abi {
    type Err = String;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        match s {
            "C" => Ok(Self::C),
            "stdcall" => Ok(Self::Stdcall),
            "fastcall" => Ok(Self::Fastcall),
            "thiscall" => Ok(Self::ThisCall),
            "vectorcall" => Ok(Self::Vectorcall),
            "aapcs" => Ok(Self::Aapcs),
            "win64" => Ok(Self::Win64),
            "C-unwind" => Ok(Self::CUnwind),
            _ => Err(format!("Invalid or unknown ABI {:?}", s)),
        }
    }
}

impl std::fmt::Display for Abi {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let s = match *self {
            Self::C => "C",
            Self::Stdcall => "stdcall",
            Self::Fastcall => "fastcall",
            Self::ThisCall => "thiscall",
            Self::Vectorcall => "vectorcall",
            Self::Aapcs => "aapcs",
            Self::Win64 => "win64",
            Self::CUnwind => "C-unwind",
        };

        s.fmt(f)
    }
}

impl quote::ToTokens for Abi {
    fn to_tokens(&self, tokens: &mut proc_macro2::TokenStream) {
        let abi = self.to_string();
        tokens.append_all(quote! { #abi });
    }
}

/// An ABI extracted from a clang cursor.
#[derive(Debug, Copy, Clone)]
pub(crate) enum ClangAbi {
    Known(Abi),
    /// An unknown or invalid ABI.
    Unknown(CXCallingConv),
}

impl ClangAbi {
    /// Returns whether this Abi is known or not.
    fn is_unknown(&self) -> bool {
        matches!(*self, ClangAbi::Unknown(..))
    }
}

impl quote::ToTokens for ClangAbi {
    fn to_tokens(&self, tokens: &mut proc_macro2::TokenStream) {
        match *self {
            Self::Known(abi) => abi.to_tokens(tokens),
            Self::Unknown(cc) => panic!(
                "Cannot turn unknown calling convention to tokens: {:?}",
                cc
            ),
        }
    }
}

/// A function signature.
#[derive(Debug)]
pub struct FunctionSig {
    /// The return type of the function.
    return_type: TypeId,

    /// The type of the arguments, optionally with the name of the argument when
    /// declared.
    argument_types: Vec<(Option<String>, TypeId)>,

    /// Whether this function is variadic.
    is_variadic: bool,
    is_divergent: bool,

    /// Whether this function's return value must be used.
    must_use: bool,

    /// The ABI of this function.
    abi: ClangAbi,
}

fn get_abi(cc: CXCallingConv) -> ClangAbi {
    use clang_sys::*;
    match cc {
        CXCallingConv_Default => ClangAbi::Known(Abi::C),
        CXCallingConv_C => ClangAbi::Known(Abi::C),
        CXCallingConv_X86StdCall => ClangAbi::Known(Abi::Stdcall),
        CXCallingConv_X86FastCall => ClangAbi::Known(Abi::Fastcall),
        CXCallingConv_X86ThisCall => ClangAbi::Known(Abi::ThisCall),
        CXCallingConv_X86VectorCall => ClangAbi::Known(Abi::Vectorcall),
        CXCallingConv_AAPCS => ClangAbi::Known(Abi::Aapcs),
        CXCallingConv_X86_64Win64 => ClangAbi::Known(Abi::Win64),
        other => ClangAbi::Unknown(other),
    }
}

/// Get the mangled name for the cursor's referent.
pub fn cursor_mangling(
    ctx: &BindgenContext,
    cursor: &clang::Cursor,
) -> Option<String> {
    if !ctx.options().enable_mangling {
        return None;
    }

    // We early return here because libclang may crash in some case
    // if we pass in a variable inside a partial specialized template.
    // See rust-lang/rust-bindgen#67, and rust-lang/rust-bindgen#462.
    if cursor.is_in_non_fully_specialized_template() {
        return None;
    }

    let is_destructor = cursor.kind() == clang_sys::CXCursor_Destructor;
    if let Ok(mut manglings) = cursor.cxx_manglings() {
        while let Some(m) = manglings.pop() {
            // Only generate the destructor group 1, see below.
            if is_destructor && !m.ends_with("D1Ev") {
                continue;
            }

            return Some(m);
        }
    }

    let mut mangling = cursor.mangling();
    if mangling.is_empty() {
        return None;
    }

    if is_destructor {
        // With old (3.8-) libclang versions, and the Itanium ABI, clang returns
        // the "destructor group 0" symbol, which means that it'll try to free
        // memory, which definitely isn't what we want.
        //
        // Explicitly force the destructor group 1 symbol.
        //
        // See http://refspecs.linuxbase.org/cxxabi-1.83.html#mangling-special
        // for the reference, and http://stackoverflow.com/a/6614369/1091587 for
        // a more friendly explanation.
        //
        // We don't need to do this for constructors since clang seems to always
        // have returned the C1 constructor.
        //
        // FIXME(emilio): Can a legit symbol in other ABIs end with this string?
        // I don't think so, but if it can this would become a linker error
        // anyway, not an invalid free at runtime.
        //
        // TODO(emilio, #611): Use cpp_demangle if this becomes nastier with
        // time.
        if mangling.ends_with("D0Ev") {
            let new_len = mangling.len() - 4;
            mangling.truncate(new_len);
            mangling.push_str("D1Ev");
        }
    }

    Some(mangling)
}

fn args_from_ty_and_cursor(
    ty: &clang::Type,
    cursor: &clang::Cursor,
    ctx: &mut BindgenContext,
) -> Vec<(Option<String>, TypeId)> {
    let cursor_args = cursor.args().unwrap_or_default().into_iter();
    let type_args = ty.args().unwrap_or_default().into_iter();

    // Argument types can be found in either the cursor or the type, but argument names may only be
    // found on the cursor. We often have access to both a type and a cursor for each argument, but
    // in some cases we may only have one.
    //
    // Prefer using the type as the source of truth for the argument's type, but fall back to
    // inspecting the cursor (this happens for Objective C interfaces).
    //
    // Prefer using the cursor for the argument's type, but fall back to using the parent's cursor
    // (this happens for function pointer return types).
    cursor_args
        .map(Some)
        .chain(std::iter::repeat(None))
        .zip(type_args.map(Some).chain(std::iter::repeat(None)))
        .take_while(|(cur, ty)| cur.is_some() || ty.is_some())
        .map(|(arg_cur, arg_ty)| {
            let name = arg_cur.map(|a| a.spelling()).and_then(|name| {
                if name.is_empty() {
                    None
                } else {
                    Some(name)
                }
            });

            let cursor = arg_cur.unwrap_or(*cursor);
            let ty = arg_ty.unwrap_or_else(|| cursor.cur_type());
            (name, Item::from_ty_or_ref(ty, cursor, None, ctx))
        })
        .collect()
}

impl FunctionSig {
    /// Construct a new function signature from the given Clang type.
    pub fn from_ty(
        ty: &clang::Type,
        cursor: &clang::Cursor,
        ctx: &mut BindgenContext,
    ) -> Result<Self, ParseError> {
        use clang_sys::*;
        debug!("FunctionSig::from_ty {:?} {:?}", ty, cursor);

        // Skip function templates
        let kind = cursor.kind();
        if kind == CXCursor_FunctionTemplate {
            return Err(ParseError::Continue);
        }

        let spelling = cursor.spelling();

        // Don't parse operatorxx functions in C++
        let is_operator = |spelling: &str| {
            spelling.starts_with("operator") &&
                !clang::is_valid_identifier(spelling)
        };
        if is_operator(&spelling) {
            return Err(ParseError::Continue);
        }

        // Constructors of non-type template parameter classes for some reason
        // include the template parameter in their name. Just skip them, since
        // we don't handle well non-type template parameters anyway.
        if (kind == CXCursor_Constructor || kind == CXCursor_Destructor) &&
            spelling.contains('<')
        {
            return Err(ParseError::Continue);
        }

        let cursor = if cursor.is_valid() {
            *cursor
        } else {
            ty.declaration()
        };

        let mut args = match kind {
            CXCursor_FunctionDecl |
            CXCursor_Constructor |
            CXCursor_CXXMethod |
            CXCursor_ObjCInstanceMethodDecl |
            CXCursor_ObjCClassMethodDecl => {
                args_from_ty_and_cursor(ty, &cursor, ctx)
            }
            _ => {
                // For non-CXCursor_FunctionDecl, visiting the cursor's children
                // is the only reliable way to get parameter names.
                let mut args = vec![];
                cursor.visit(|c| {
                    if c.kind() == CXCursor_ParmDecl {
                        let ty =
                            Item::from_ty_or_ref(c.cur_type(), c, None, ctx);
                        let name = c.spelling();
                        let name =
                            if name.is_empty() { None } else { Some(name) };
                        args.push((name, ty));
                    }
                    CXChildVisit_Continue
                });

                if args.is_empty() {
                    // FIXME(emilio): Sometimes libclang doesn't expose the
                    // right AST for functions tagged as stdcall and such...
                    //
                    // https://bugs.llvm.org/show_bug.cgi?id=45919
                    args_from_ty_and_cursor(ty, &cursor, ctx)
                } else {
                    args
                }
            }
        };

        let (must_use, mut is_divergent) =
            if ctx.options().enable_function_attribute_detection {
                let [must_use, no_return, no_return_cpp] = cursor.has_attrs(&[
                    Attribute::MUST_USE,
                    Attribute::NO_RETURN,
                    Attribute::NO_RETURN_CPP,
                ]);
                (must_use, no_return || no_return_cpp)
            } else {
                Default::default()
            };

        // This looks easy to break but the clang parser keeps the type spelling clean even if
        // other attributes are added.
        is_divergent =
            is_divergent || ty.spelling().contains("__attribute__((noreturn))");

        let is_method = kind == CXCursor_CXXMethod;
        let is_constructor = kind == CXCursor_Constructor;
        let is_destructor = kind == CXCursor_Destructor;
        if (is_constructor || is_destructor || is_method) &&
            cursor.lexical_parent() != cursor.semantic_parent()
        {
            // Only parse constructors once.
            return Err(ParseError::Continue);
        }

        if is_method || is_constructor || is_destructor {
            let is_const = is_method && cursor.method_is_const();
            let is_virtual = is_method && cursor.method_is_virtual();
            let is_static = is_method && cursor.method_is_static();
            if !is_static && !is_virtual {
                let parent = cursor.semantic_parent();
                let class = Item::parse(parent, None, ctx)
                    .expect("Expected to parse the class");
                // The `class` most likely is not finished parsing yet, so use
                // the unchecked variant.
                let class = class.as_type_id_unchecked();

                let class = if is_const {
                    let const_class_id = ctx.next_item_id();
                    ctx.build_const_wrapper(
                        const_class_id,
                        class,
                        None,
                        &parent.cur_type(),
                    )
                } else {
                    class
                };

                let ptr =
                    Item::builtin_type(TypeKind::Pointer(class), false, ctx);
                args.insert(0, (Some("this".into()), ptr));
            } else if is_virtual {
                let void = Item::builtin_type(TypeKind::Void, false, ctx);
                let ptr =
                    Item::builtin_type(TypeKind::Pointer(void), false, ctx);
                args.insert(0, (Some("this".into()), ptr));
            }
        }

        let ty_ret_type = if kind == CXCursor_ObjCInstanceMethodDecl ||
            kind == CXCursor_ObjCClassMethodDecl
        {
            ty.ret_type()
                .or_else(|| cursor.ret_type())
                .ok_or(ParseError::Continue)?
        } else {
            ty.ret_type().ok_or(ParseError::Continue)?
        };

        let ret = if is_constructor && ctx.is_target_wasm32() {
            // Constructors in Clang wasm32 target return a pointer to the object
            // being constructed.
            let void = Item::builtin_type(TypeKind::Void, false, ctx);
            Item::builtin_type(TypeKind::Pointer(void), false, ctx)
        } else {
            Item::from_ty_or_ref(ty_ret_type, cursor, None, ctx)
        };

        // Clang plays with us at "find the calling convention", see #549 and
        // co. This seems to be a better fix than that commit.
        let mut call_conv = ty.call_conv();
        if let Some(ty) = cursor.cur_type().canonical_type().pointee_type() {
            let cursor_call_conv = ty.call_conv();
            if cursor_call_conv != CXCallingConv_Invalid {
                call_conv = cursor_call_conv;
            }
        }

        let abi = get_abi(call_conv);

        if abi.is_unknown() {
            warn!("Unknown calling convention: {:?}", call_conv);
        }

        Ok(FunctionSig {
            return_type: ret,
            argument_types: args,
            is_variadic: ty.is_variadic(),
            is_divergent,
            must_use,
            abi,
        })
    }

    /// Get this function signature's return type.
    pub fn return_type(&self) -> TypeId {
        self.return_type
    }

    /// Get this function signature's argument (name, type) pairs.
    pub fn argument_types(&self) -> &[(Option<String>, TypeId)] {
        &self.argument_types
    }

    /// Get this function signature's ABI.
    pub(crate) fn abi(
        &self,
        ctx: &BindgenContext,
        name: Option<&str>,
    ) -> ClangAbi {
        // FIXME (pvdrz): Try to do this check lazily instead. Maybe store the ABI inside `ctx`
        // instead?.
        if let Some(name) = name {
            if let Some((abi, _)) = ctx
                .options()
                .abi_overrides
                .iter()
                .find(|(_, regex_set)| regex_set.matches(name))
            {
                ClangAbi::Known(*abi)
            } else {
                self.abi
            }
        } else {
            self.abi
        }
    }

    /// Is this function signature variadic?
    pub fn is_variadic(&self) -> bool {
        // Clang reports some functions as variadic when they *might* be
        // variadic. We do the argument check because rust doesn't codegen well
        // variadic functions without an initial argument.
        self.is_variadic && !self.argument_types.is_empty()
    }

    /// Must this function's return value be used?
    pub fn must_use(&self) -> bool {
        self.must_use
    }

    /// Are function pointers with this signature able to derive Rust traits?
    /// Rust only supports deriving traits for function pointers with a limited
    /// number of parameters and a couple ABIs.
    ///
    /// For more details, see:
    ///
    /// * https://github.com/rust-lang/rust-bindgen/issues/547,
    /// * https://github.com/rust-lang/rust/issues/38848,
    /// * and https://github.com/rust-lang/rust/issues/40158
    pub fn function_pointers_can_derive(&self) -> bool {
        if self.argument_types.len() > RUST_DERIVE_FUNPTR_LIMIT {
            return false;
        }

        matches!(self.abi, ClangAbi::Known(Abi::C) | ClangAbi::Unknown(..))
    }

    pub(crate) fn is_divergent(&self) -> bool {
        self.is_divergent
    }
}

impl ClangSubItemParser for Function {
    fn parse(
        cursor: clang::Cursor,
        context: &mut BindgenContext,
    ) -> Result<ParseResult<Self>, ParseError> {
        use clang_sys::*;

        let kind = match FunctionKind::from_cursor(&cursor) {
            None => return Err(ParseError::Continue),
            Some(k) => k,
        };

        debug!("Function::parse({:?}, {:?})", cursor, cursor.cur_type());

        let visibility = cursor.visibility();
        if visibility != CXVisibility_Default {
            return Err(ParseError::Continue);
        }

        if cursor.access_specifier() == CX_CXXPrivate {
            return Err(ParseError::Continue);
        }

        if cursor.is_inlined_function() ||
            cursor
                .definition()
                .map_or(false, |x| x.is_inlined_function())
        {
            if !context.options().generate_inline_functions {
                return Err(ParseError::Continue);
            }
            if cursor.is_deleted_function() {
                return Err(ParseError::Continue);
            }
        }

        let linkage = cursor.linkage();
        let linkage = match linkage {
            CXLinkage_External | CXLinkage_UniqueExternal => Linkage::External,
            CXLinkage_Internal => Linkage::Internal,
            _ => return Err(ParseError::Continue),
        };

        // Grab the signature using Item::from_ty.
        let sig = Item::from_ty(&cursor.cur_type(), cursor, None, context)?;

        let mut name = cursor.spelling();
        assert!(!name.is_empty(), "Empty function name?");

        if cursor.kind() == CXCursor_Destructor {
            // Remove the leading `~`. The alternative to this is special-casing
            // code-generation for destructor functions, which seems less than
            // ideal.
            if name.starts_with('~') {
                name.remove(0);
            }

            // Add a suffix to avoid colliding with constructors. This would be
            // technically fine (since we handle duplicated functions/methods),
            // but seems easy enough to handle it here.
            name.push_str("_destructor");
        }
        if let Some(nm) = context
            .options()
            .last_callback(|callbacks| callbacks.generated_name_override(&name))
        {
            name = nm;
        }
        assert!(!name.is_empty(), "Empty function name.");

        let mangled_name = cursor_mangling(context, &cursor);
        let comment = cursor.raw_comment();

        let function =
            Self::new(name, mangled_name, sig, comment, kind, linkage);
        Ok(ParseResult::New(function, Some(cursor)))
    }
}

impl Trace for FunctionSig {
    type Extra = ();

    fn trace<T>(&self, _: &BindgenContext, tracer: &mut T, _: &())
    where
        T: Tracer,
    {
        tracer.visit_kind(self.return_type().into(), EdgeKind::FunctionReturn);

        for &(_, ty) in self.argument_types() {
            tracer.visit_kind(ty.into(), EdgeKind::FunctionParameter);
        }
    }
}