rodio/source/agc.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
//
// Automatic Gain Control (AGC) Algorithm
// Designed by @UnknownSuperficialNight
//
// Features:
// • Adaptive peak detection
// • RMS-based level estimation
// • Asymmetric attack/release
// • RMS-based general adjustments with peak limiting
//
// Optimized for smooth and responsive gain control
//
// Crafted with love. Enjoy! :)
//
use super::SeekError;
use crate::{Sample, Source};
#[cfg(feature = "experimental")]
use atomic_float::AtomicF32;
#[cfg(feature = "experimental")]
use std::sync::atomic::{AtomicBool, Ordering};
#[cfg(feature = "experimental")]
use std::sync::Arc;
use std::time::Duration;
#[cfg(feature = "tracing")]
use tracing;
/// Ensures `RMS_WINDOW_SIZE` is a power of two
const fn power_of_two(n: usize) -> usize {
assert!(
n.is_power_of_two(),
"RMS_WINDOW_SIZE must be a power of two"
);
n
}
/// Size of the circular buffer used for RMS calculation.
/// A larger size provides more stable RMS values but increases latency.
const RMS_WINDOW_SIZE: usize = power_of_two(8192);
#[cfg(feature = "experimental")]
/// Automatic Gain Control filter for maintaining consistent output levels.
///
/// This struct implements an AGC algorithm that dynamically adjusts audio levels
/// based on both **peak** and **RMS** (Root Mean Square) measurements.
#[derive(Clone, Debug)]
pub struct AutomaticGainControl<I> {
input: I,
target_level: Arc<AtomicF32>,
absolute_max_gain: Arc<AtomicF32>,
current_gain: f32,
attack_coeff: Arc<AtomicF32>,
release_coeff: Arc<AtomicF32>,
min_attack_coeff: f32,
peak_level: f32,
rms_window: CircularBuffer,
is_enabled: Arc<AtomicBool>,
}
#[cfg(not(feature = "experimental"))]
/// Automatic Gain Control filter for maintaining consistent output levels.
///
/// This struct implements an AGC algorithm that dynamically adjusts audio levels
/// based on both **peak** and **RMS** (Root Mean Square) measurements.
#[derive(Clone, Debug)]
pub struct AutomaticGainControl<I> {
input: I,
target_level: f32,
absolute_max_gain: f32,
current_gain: f32,
attack_coeff: f32,
release_coeff: f32,
min_attack_coeff: f32,
peak_level: f32,
rms_window: CircularBuffer,
is_enabled: bool,
}
/// A circular buffer for efficient RMS calculation over a sliding window.
///
/// This structure allows for constant-time updates and mean calculations,
/// which is crucial for real-time audio processing.
#[derive(Clone, Debug)]
struct CircularBuffer {
buffer: Box<[f32; RMS_WINDOW_SIZE]>,
sum: f32,
index: usize,
}
impl CircularBuffer {
/// Creates a new `CircularBuffer` with a fixed size determined at compile time.
#[inline]
fn new() -> Self {
CircularBuffer {
buffer: Box::new([0.0; RMS_WINDOW_SIZE]),
sum: 0.0,
index: 0,
}
}
/// Pushes a new value into the buffer and returns the old value.
///
/// This method maintains a running sum for efficient mean calculation.
#[inline]
fn push(&mut self, value: f32) -> f32 {
let old_value = self.buffer[self.index];
// Update the sum by first subtracting the old value and then adding the new value; this is more accurate.
self.sum = self.sum - old_value + value;
self.buffer[self.index] = value;
// Use bitwise AND for efficient index wrapping since RMS_WINDOW_SIZE is a power of two.
self.index = (self.index + 1) & (RMS_WINDOW_SIZE - 1);
old_value
}
/// Calculates the mean of all values in the buffer.
///
/// This operation is `O(1)` due to the maintained running sum.
#[inline]
fn mean(&self) -> f32 {
self.sum / RMS_WINDOW_SIZE as f32
}
}
/// Constructs an `AutomaticGainControl` object with specified parameters.
///
/// # Arguments
///
/// * `input` - The input audio source
/// * `target_level` - The desired output level
/// * `attack_time` - Time constant for gain increase
/// * `release_time` - Time constant for gain decrease
/// * `absolute_max_gain` - Maximum allowable gain
#[inline]
pub(crate) fn automatic_gain_control<I>(
input: I,
target_level: f32,
attack_time: f32,
release_time: f32,
absolute_max_gain: f32,
) -> AutomaticGainControl<I>
where
I: Source,
I::Item: Sample,
{
let sample_rate = input.sample_rate();
let attack_coeff = (-1.0 / (attack_time * sample_rate as f32)).exp();
let release_coeff = (-1.0 / (release_time * sample_rate as f32)).exp();
#[cfg(feature = "experimental")]
{
AutomaticGainControl {
input,
target_level: Arc::new(AtomicF32::new(target_level)),
absolute_max_gain: Arc::new(AtomicF32::new(absolute_max_gain)),
current_gain: 1.0,
attack_coeff: Arc::new(AtomicF32::new(attack_coeff)),
release_coeff: Arc::new(AtomicF32::new(release_coeff)),
min_attack_coeff: release_time,
peak_level: 0.0,
rms_window: CircularBuffer::new(),
is_enabled: Arc::new(AtomicBool::new(true)),
}
}
#[cfg(not(feature = "experimental"))]
{
AutomaticGainControl {
input,
target_level,
absolute_max_gain,
current_gain: 1.0,
attack_coeff,
release_coeff,
min_attack_coeff: release_time,
peak_level: 0.0,
rms_window: CircularBuffer::new(),
is_enabled: true,
}
}
}
impl<I> AutomaticGainControl<I>
where
I: Source,
I::Item: Sample,
{
#[inline]
fn target_level(&self) -> f32 {
#[cfg(feature = "experimental")]
{
self.target_level.load(Ordering::Relaxed)
}
#[cfg(not(feature = "experimental"))]
{
self.target_level
}
}
#[inline]
fn absolute_max_gain(&self) -> f32 {
#[cfg(feature = "experimental")]
{
self.absolute_max_gain.load(Ordering::Relaxed)
}
#[cfg(not(feature = "experimental"))]
{
self.absolute_max_gain
}
}
#[inline]
fn attack_coeff(&self) -> f32 {
#[cfg(feature = "experimental")]
{
self.attack_coeff.load(Ordering::Relaxed)
}
#[cfg(not(feature = "experimental"))]
{
self.attack_coeff
}
}
#[inline]
fn release_coeff(&self) -> f32 {
#[cfg(feature = "experimental")]
{
self.release_coeff.load(Ordering::Relaxed)
}
#[cfg(not(feature = "experimental"))]
{
self.release_coeff
}
}
#[inline]
fn is_enabled(&self) -> bool {
#[cfg(feature = "experimental")]
{
self.is_enabled.load(Ordering::Relaxed)
}
#[cfg(not(feature = "experimental"))]
{
self.is_enabled
}
}
#[cfg(feature = "experimental")]
/// Access the target output level for real-time adjustment.
///
/// Use this to dynamically modify the AGC's target level while audio is processing.
/// Adjust this value to control the overall output amplitude of the processed signal.
#[inline]
pub fn get_target_level(&self) -> Arc<AtomicF32> {
Arc::clone(&self.target_level)
}
#[cfg(feature = "experimental")]
/// Access the maximum gain limit for real-time adjustment.
///
/// Use this to dynamically modify the AGC's maximum allowable gain during runtime.
/// Adjusting this value helps prevent excessive amplification in low-level signals.
#[inline]
pub fn get_absolute_max_gain(&self) -> Arc<AtomicF32> {
Arc::clone(&self.absolute_max_gain)
}
#[cfg(feature = "experimental")]
/// Access the attack coefficient for real-time adjustment.
///
/// Use this to dynamically modify how quickly the AGC responds to level increases.
/// Smaller values result in faster response, larger values in slower response.
/// Adjust during runtime to fine-tune AGC behavior for different audio content.
#[inline]
pub fn get_attack_coeff(&self) -> Arc<AtomicF32> {
Arc::clone(&self.attack_coeff)
}
#[cfg(feature = "experimental")]
/// Access the release coefficient for real-time adjustment.
///
/// Use this to dynamically modify how quickly the AGC responds to level decreases.
/// Smaller values result in faster response, larger values in slower response.
/// Adjust during runtime to optimize AGC behavior for varying audio dynamics.
#[inline]
pub fn get_release_coeff(&self) -> Arc<AtomicF32> {
Arc::clone(&self.release_coeff)
}
#[cfg(feature = "experimental")]
/// Access the AGC on/off control for real-time adjustment.
///
/// Use this to dynamically enable or disable AGC processing during runtime.
/// Useful for comparing processed and unprocessed audio or for disabling/enabling AGC at runtime.
#[inline]
pub fn get_agc_control(&self) -> Arc<AtomicBool> {
Arc::clone(&self.is_enabled)
}
#[cfg(not(feature = "experimental"))]
/// Enable or disable AGC processing.
///
/// Use this to enable or disable AGC processing.
/// Useful for comparing processed and unprocessed audio or for disabling/enabling AGC.
#[inline]
pub fn set_enabled(&mut self, enabled: bool) {
self.is_enabled = enabled;
}
/// Updates the peak level with an adaptive attack coefficient
///
/// This method adjusts the peak level using a variable attack coefficient.
/// It responds faster to sudden increases in signal level by using a
/// minimum attack coefficient of `min_attack_coeff` when the sample value exceeds the
/// current peak level. This adaptive behavior helps capture transients
/// more accurately while maintaining smoother behavior for gradual changes.
#[inline]
fn update_peak_level(&mut self, sample_value: f32) {
let attack_coeff = if sample_value > self.peak_level {
self.attack_coeff().min(self.min_attack_coeff) // User-defined attack time limited via release_time
} else {
self.release_coeff()
};
self.peak_level = attack_coeff * self.peak_level + (1.0 - attack_coeff) * sample_value;
}
/// Updates the RMS (Root Mean Square) level using a circular buffer approach.
/// This method calculates a moving average of the squared input samples,
/// providing a measure of the signal's average power over time.
#[inline]
fn update_rms(&mut self, sample_value: f32) -> f32 {
let squared_sample = sample_value * sample_value;
self.rms_window.push(squared_sample);
self.rms_window.mean().sqrt()
}
/// Calculate gain adjustments based on peak levels
/// This method determines the appropriate gain level to apply to the audio
/// signal, considering the peak level.
/// The peak level helps prevent sudden spikes in the output signal.
#[inline]
fn calculate_peak_gain(&self) -> f32 {
if self.peak_level > 0.0 {
(self.target_level() / self.peak_level).min(self.absolute_max_gain())
} else {
self.absolute_max_gain()
}
}
#[inline]
fn process_sample(&mut self, sample: I::Item) -> I::Item {
// Convert the sample to its absolute float value for level calculations
let sample_value = sample.to_f32().abs();
// Dynamically adjust peak level using an adaptive attack coefficient
self.update_peak_level(sample_value);
// Calculate the current RMS (Root Mean Square) level using a sliding window approach
let rms = self.update_rms(sample_value);
// Compute the gain adjustment required to reach the target level based on RMS
let rms_gain = if rms > 0.0 {
self.target_level() / rms
} else {
self.absolute_max_gain() // Default to max gain if RMS is zero
};
// Calculate the peak limiting gain
let peak_gain = self.calculate_peak_gain();
// Use RMS for general adjustments, but limit by peak gain to prevent clipping
let desired_gain = rms_gain.min(peak_gain);
// Adaptive attack/release speed for AGC (Automatic Gain Control)
//
// This mechanism implements an asymmetric approach to gain adjustment:
// 1. **Slow increase**: Prevents abrupt amplification of noise during quiet periods.
// 2. **Fast decrease**: Rapidly attenuates sudden loud signals to avoid distortion.
//
// The asymmetry is crucial because:
// - Gradual gain increases sound more natural and less noticeable to listeners.
// - Quick gain reductions are necessary to prevent clipping and maintain audio quality.
//
// This approach addresses several challenges associated with high attack times:
// 1. **Slow response**: With a high attack time, the AGC responds very slowly to changes in input level.
// This means it takes longer for the gain to adjust to new signal levels.
// 2. **Initial gain calculation**: When the audio starts or after a period of silence, the initial gain
// calculation might result in a very high gain value, especially if the input signal starts quietly.
// 3. **Overshooting**: As the gain slowly increases (due to the high attack time), it might overshoot
// the desired level, causing the signal to become too loud.
// 4. **Overcorrection**: The AGC then tries to correct this by reducing the gain, but due to the slow response,
// it might reduce the gain too much, causing the sound to drop to near-zero levels.
// 5. **Slow recovery**: Again, due to the high attack time, it takes a while for the gain to increase
// back to the appropriate level.
//
// By using a faster release time for decreasing gain, we can mitigate these issues and provide
// more responsive control over sudden level increases while maintaining smooth gain increases.
let attack_speed = if desired_gain > self.current_gain {
self.attack_coeff()
} else {
self.release_coeff()
};
// Gradually adjust the current gain towards the desired gain for smooth transitions
self.current_gain = self.current_gain * attack_speed + desired_gain * (1.0 - attack_speed);
// Ensure the calculated gain stays within the defined operational range
self.current_gain = self.current_gain.clamp(0.1, self.absolute_max_gain());
// Output current gain value for developers to fine tune their inputs to automatic_gain_control
#[cfg(feature = "tracing")]
tracing::debug!("AGC gain: {}", self.current_gain,);
// Apply the computed gain to the input sample and return the result
sample.amplify(self.current_gain)
}
/// Returns a mutable reference to the inner source.
pub fn inner(&self) -> &I {
&self.input
}
/// Returns the inner source.
pub fn inner_mut(&mut self) -> &mut I {
&mut self.input
}
}
impl<I> Iterator for AutomaticGainControl<I>
where
I: Source,
I::Item: Sample,
{
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<I::Item> {
self.input.next().map(|sample| {
if self.is_enabled() {
self.process_sample(sample)
} else {
sample
}
})
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.input.size_hint()
}
}
impl<I> ExactSizeIterator for AutomaticGainControl<I>
where
I: Source + ExactSizeIterator,
I::Item: Sample,
{
}
impl<I> Source for AutomaticGainControl<I>
where
I: Source,
I::Item: Sample,
{
#[inline]
fn current_frame_len(&self) -> Option<usize> {
self.input.current_frame_len()
}
#[inline]
fn channels(&self) -> u16 {
self.input.channels()
}
#[inline]
fn sample_rate(&self) -> u32 {
self.input.sample_rate()
}
#[inline]
fn total_duration(&self) -> Option<Duration> {
self.input.total_duration()
}
#[inline]
fn try_seek(&mut self, pos: Duration) -> Result<(), SeekError> {
self.input.try_seek(pos)
}
}