nalgebra/geometry/
rotation_conversion.rs

1use num::Zero;
2
3use simba::scalar::{RealField, SubsetOf, SupersetOf};
4use simba::simd::{PrimitiveSimdValue, SimdValue};
5
6use crate::base::allocator::Allocator;
7use crate::base::dimension::{DimMin, DimNameAdd, DimNameSum, U1};
8use crate::base::{Const, DefaultAllocator, Matrix2, Matrix3, Matrix4, OMatrix, SMatrix, Scalar};
9
10use crate::geometry::{
11    AbstractRotation, Isometry, Rotation, Rotation2, Rotation3, Similarity, SuperTCategoryOf,
12    TAffine, Transform, Translation, UnitComplex, UnitDualQuaternion, UnitQuaternion,
13};
14
15/*
16 * This file provides the following conversions:
17 * =============================================
18 *
19 * Rotation  -> Rotation
20 * Rotation3 -> UnitQuaternion
21 * Rotation3 -> UnitDualQuaternion
22 * Rotation2 -> UnitComplex
23 * Rotation  -> Isometry
24 * Rotation  -> Similarity
25 * Rotation  -> Transform
26 * Rotation  -> Matrix (homogeneous)
27
28*/
29
30impl<T1, T2, const D: usize> SubsetOf<Rotation<T2, D>> for Rotation<T1, D>
31where
32    T1: RealField,
33    T2: RealField + SupersetOf<T1>,
34{
35    #[inline]
36    fn to_superset(&self) -> Rotation<T2, D> {
37        Rotation::from_matrix_unchecked(self.matrix().to_superset())
38    }
39
40    #[inline]
41    fn is_in_subset(rot: &Rotation<T2, D>) -> bool {
42        crate::is_convertible::<_, SMatrix<T1, D, D>>(rot.matrix())
43    }
44
45    #[inline]
46    fn from_superset_unchecked(rot: &Rotation<T2, D>) -> Self {
47        Rotation::from_matrix_unchecked(rot.matrix().to_subset_unchecked())
48    }
49}
50
51impl<T1, T2> SubsetOf<UnitQuaternion<T2>> for Rotation3<T1>
52where
53    T1: RealField,
54    T2: RealField + SupersetOf<T1>,
55{
56    #[inline]
57    fn to_superset(&self) -> UnitQuaternion<T2> {
58        let q = UnitQuaternion::<T1>::from_rotation_matrix(self);
59        q.to_superset()
60    }
61
62    #[inline]
63    fn is_in_subset(q: &UnitQuaternion<T2>) -> bool {
64        crate::is_convertible::<_, UnitQuaternion<T1>>(q)
65    }
66
67    #[inline]
68    fn from_superset_unchecked(q: &UnitQuaternion<T2>) -> Self {
69        let q: UnitQuaternion<T1> = crate::convert_ref_unchecked(q);
70        q.to_rotation_matrix()
71    }
72}
73
74impl<T1, T2> SubsetOf<UnitDualQuaternion<T2>> for Rotation3<T1>
75where
76    T1: RealField,
77    T2: RealField + SupersetOf<T1>,
78{
79    #[inline]
80    fn to_superset(&self) -> UnitDualQuaternion<T2> {
81        let q = UnitQuaternion::<T1>::from_rotation_matrix(self);
82        let dq = UnitDualQuaternion::from_rotation(q);
83        dq.to_superset()
84    }
85
86    #[inline]
87    fn is_in_subset(dq: &UnitDualQuaternion<T2>) -> bool {
88        crate::is_convertible::<_, UnitQuaternion<T1>>(&dq.rotation())
89            && dq.translation().vector.is_zero()
90    }
91
92    #[inline]
93    fn from_superset_unchecked(dq: &UnitDualQuaternion<T2>) -> Self {
94        let dq: UnitDualQuaternion<T1> = crate::convert_ref_unchecked(dq);
95        dq.rotation().to_rotation_matrix()
96    }
97}
98
99impl<T1, T2> SubsetOf<UnitComplex<T2>> for Rotation2<T1>
100where
101    T1: RealField,
102    T2: RealField + SupersetOf<T1>,
103{
104    #[inline]
105    fn to_superset(&self) -> UnitComplex<T2> {
106        let q = UnitComplex::<T1>::from_rotation_matrix(self);
107        q.to_superset()
108    }
109
110    #[inline]
111    fn is_in_subset(q: &UnitComplex<T2>) -> bool {
112        crate::is_convertible::<_, UnitComplex<T1>>(q)
113    }
114
115    #[inline]
116    fn from_superset_unchecked(q: &UnitComplex<T2>) -> Self {
117        let q: UnitComplex<T1> = crate::convert_ref_unchecked(q);
118        q.to_rotation_matrix()
119    }
120}
121
122impl<T1, T2, R, const D: usize> SubsetOf<Isometry<T2, R, D>> for Rotation<T1, D>
123where
124    T1: RealField,
125    T2: RealField + SupersetOf<T1>,
126    R: AbstractRotation<T2, D> + SupersetOf<Self>,
127{
128    #[inline]
129    fn to_superset(&self) -> Isometry<T2, R, D> {
130        Isometry::from_parts(Translation::identity(), crate::convert_ref(self))
131    }
132
133    #[inline]
134    fn is_in_subset(iso: &Isometry<T2, R, D>) -> bool {
135        iso.translation.vector.is_zero()
136    }
137
138    #[inline]
139    fn from_superset_unchecked(iso: &Isometry<T2, R, D>) -> Self {
140        crate::convert_ref_unchecked(&iso.rotation)
141    }
142}
143
144impl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Rotation<T1, D>
145where
146    T1: RealField,
147    T2: RealField + SupersetOf<T1>,
148    R: AbstractRotation<T2, D> + SupersetOf<Self>,
149{
150    #[inline]
151    fn to_superset(&self) -> Similarity<T2, R, D> {
152        Similarity::from_parts(Translation::identity(), crate::convert_ref(self), T2::one())
153    }
154
155    #[inline]
156    fn is_in_subset(sim: &Similarity<T2, R, D>) -> bool {
157        sim.isometry.translation.vector.is_zero() && sim.scaling() == T2::one()
158    }
159
160    #[inline]
161    fn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self {
162        crate::convert_ref_unchecked(&sim.isometry.rotation)
163    }
164}
165
166impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Rotation<T1, D>
167where
168    T1: RealField,
169    T2: RealField + SupersetOf<T1>,
170    C: SuperTCategoryOf<TAffine>,
171    Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>, // needed by .is_special_orthogonal()
172    DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
173        + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
174    // + Allocator<(usize, usize), D>,
175    // Allocator<T1, D, D>
176    //     + Allocator<T2, D, D>
177{
178    // needed by .is_special_orthogonal()
179    #[inline]
180    fn to_superset(&self) -> Transform<T2, C, D> {
181        Transform::from_matrix_unchecked(self.to_homogeneous().to_superset())
182    }
183
184    #[inline]
185    fn is_in_subset(t: &Transform<T2, C, D>) -> bool {
186        <Self as SubsetOf<_>>::is_in_subset(t.matrix())
187    }
188
189    #[inline]
190    fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self {
191        Self::from_superset_unchecked(t.matrix())
192    }
193}
194
195impl<T1, T2, const D: usize>
196    SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> for Rotation<T1, D>
197where
198    T1: RealField,
199    T2: RealField + SupersetOf<T1>,
200    Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>, // needed by .is_special_orthogonal()
201    DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
202        + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>, // + Allocator<(usize, usize), D>,
203                                                                             // + Allocator<T1, D, D>
204                                                                             // + Allocator<T2, D, D>
205{
206    // needed by .is_special_orthogonal()
207    #[inline]
208    fn to_superset(&self) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> {
209        self.to_homogeneous().to_superset()
210    }
211
212    #[inline]
213    fn is_in_subset(m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>) -> bool {
214        let rot = m.fixed_slice::<D, D>(0, 0);
215        let bottom = m.fixed_slice::<1, D>(D, 0);
216
217        // Scalar types agree.
218        m.iter().all(|e| SupersetOf::<T1>::is_in_subset(e)) &&
219        // The block part is a rotation.
220        rot.is_special_orthogonal(T2::default_epsilon() * crate::convert(100.0)) &&
221        // The bottom row is (0, 0, ..., 1)
222        bottom.iter().all(|e| e.is_zero()) && m[(D, D)] == T2::one()
223    }
224
225    #[inline]
226    fn from_superset_unchecked(
227        m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
228    ) -> Self {
229        let r = m.fixed_slice::<D, D>(0, 0);
230        Self::from_matrix_unchecked(crate::convert_unchecked(r.into_owned()))
231    }
232}
233
234impl<T: RealField> From<Rotation2<T>> for Matrix3<T> {
235    #[inline]
236    fn from(q: Rotation2<T>) -> Self {
237        q.to_homogeneous()
238    }
239}
240
241impl<T: RealField> From<Rotation2<T>> for Matrix2<T> {
242    #[inline]
243    fn from(q: Rotation2<T>) -> Self {
244        q.into_inner()
245    }
246}
247
248impl<T: RealField> From<Rotation3<T>> for Matrix4<T> {
249    #[inline]
250    fn from(q: Rotation3<T>) -> Self {
251        q.to_homogeneous()
252    }
253}
254
255impl<T: RealField> From<Rotation3<T>> for Matrix3<T> {
256    #[inline]
257    fn from(q: Rotation3<T>) -> Self {
258        q.into_inner()
259    }
260}
261
262impl<T: Scalar + PrimitiveSimdValue, const D: usize> From<[Rotation<T::Element, D>; 2]>
263    for Rotation<T, D>
264where
265    T: From<[<T as SimdValue>::Element; 2]>,
266    T::Element: Scalar + Copy,
267{
268    #[inline]
269    fn from(arr: [Rotation<T::Element, D>; 2]) -> Self {
270        Self::from_matrix_unchecked(OMatrix::from([arr[0].into_inner(), arr[1].into_inner()]))
271    }
272}
273
274impl<T: Scalar + PrimitiveSimdValue, const D: usize> From<[Rotation<T::Element, D>; 4]>
275    for Rotation<T, D>
276where
277    T: From<[<T as SimdValue>::Element; 4]>,
278    T::Element: Scalar + Copy,
279{
280    #[inline]
281    fn from(arr: [Rotation<T::Element, D>; 4]) -> Self {
282        Self::from_matrix_unchecked(OMatrix::from([
283            arr[0].into_inner(),
284            arr[1].into_inner(),
285            arr[2].into_inner(),
286            arr[3].into_inner(),
287        ]))
288    }
289}
290
291impl<T: Scalar + PrimitiveSimdValue, const D: usize> From<[Rotation<T::Element, D>; 8]>
292    for Rotation<T, D>
293where
294    T: From<[<T as SimdValue>::Element; 8]>,
295    T::Element: Scalar + Copy,
296{
297    #[inline]
298    fn from(arr: [Rotation<T::Element, D>; 8]) -> Self {
299        Self::from_matrix_unchecked(OMatrix::from([
300            arr[0].into_inner(),
301            arr[1].into_inner(),
302            arr[2].into_inner(),
303            arr[3].into_inner(),
304            arr[4].into_inner(),
305            arr[5].into_inner(),
306            arr[6].into_inner(),
307            arr[7].into_inner(),
308        ]))
309    }
310}
311
312impl<T: Scalar + PrimitiveSimdValue, const D: usize> From<[Rotation<T::Element, D>; 16]>
313    for Rotation<T, D>
314where
315    T: From<[<T as SimdValue>::Element; 16]>,
316    T::Element: Scalar + Copy,
317{
318    #[inline]
319    fn from(arr: [Rotation<T::Element, D>; 16]) -> Self {
320        Self::from_matrix_unchecked(OMatrix::from([
321            arr[0].into_inner(),
322            arr[1].into_inner(),
323            arr[2].into_inner(),
324            arr[3].into_inner(),
325            arr[4].into_inner(),
326            arr[5].into_inner(),
327            arr[6].into_inner(),
328            arr[7].into_inner(),
329            arr[8].into_inner(),
330            arr[9].into_inner(),
331            arr[10].into_inner(),
332            arr[11].into_inner(),
333            arr[12].into_inner(),
334            arr[13].into_inner(),
335            arr[14].into_inner(),
336            arr[15].into_inner(),
337        ]))
338    }
339}