ncollide3d/bounding_volume/
circular_cone.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
use crate::math::Vector;
use na::{self, RealField, Unit};

/// A cone with a circular basis and its apex at the origin.
///
/// A circular cone is a set of half-lines emanating from its apex and forming an angle of at most `angle` with its `axis`.
/// It is usually used to bound a set of directions like normals and tangents.
/// It is convex and have a circular basis.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum CircularCone<N: RealField + Copy> {
    /// A cone which is the whole space.
    Full,
    /// An empty cone containing only the zero vector.
    Empty,
    /// All the vectors emanating from the origin, with a maximal `angle` wrt the given `axis`.
    Spread {
        /// The cone axis.
        axis: Unit<Vector<N>>,
        /// Half of the cone apex angle, i.e., the largest angle possible between the axis and a vector contained by this cone.
        angle: N,
    },
}

// FIXME: rewrite all those without calls to acos()
// (by performing tests on the cos themselves instead of the actual angles).

impl<N: RealField + Copy> CircularCone<N> {
    /// Creates a circular cone from a set of vectors.
    pub fn from_vectors(dirs: &[Unit<Vector<N>>]) -> Self {
        let mut res = CircularCone::Empty;

        for dir in dirs {
            res.push(*dir)
        }

        res
    }

    /// Returns `true` if this cone is empty.
    pub fn is_empty(&self) -> bool {
        *self == CircularCone::Empty
    }

    /// Enlarge this cone so it contains `dir` too.
    pub fn push(&mut self, dir: Unit<Vector<N>>) {
        match *self {
            CircularCone::Full => {}
            CircularCone::Empty => {
                *self = CircularCone::Spread {
                    axis: dir,
                    angle: N::zero(),
                }
            }
            CircularCone::Spread {
                ref mut axis,
                ref mut angle,
            } => {
                let dot = axis.dot(&dir);
                let delta_ang = dot.acos();

                if delta_ang <= *angle {
                    // The current cone already contains dir.
                } else {
                    let ortho = *dir - **axis * dot;
                    if let Some(basis2) = Unit::try_new(ortho, N::zero()) {
                        let hang = delta_ang * na::convert(0.5);
                        let (s, c) = hang.sin_cos();
                        *axis = Unit::new_unchecked(**axis * c + *basis2 * s);
                        *angle = hang + *angle * na::convert(0.5);
                    }
                    // Otherwise, dir and axis are collinear so there is nothing more to do.
                }
            }
        }
    }

    /// Returns `true` if this cone intersects `other`.
    pub fn intersects(&self, other: &Self) -> bool {
        match (self, other) {
            (CircularCone::Empty, _) => false,
            (_, CircularCone::Empty) => false,
            (CircularCone::Full, _) => true,
            (_, CircularCone::Full) => true,
            (
                CircularCone::Spread {
                    axis: axis1,
                    angle: angle1,
                },
                CircularCone::Spread {
                    axis: axis2,
                    angle: angle2,
                },
            ) => {
                let ang = axis1.dot(&axis2).acos();
                ang <= *angle1 + *angle2
            }
        }
    }

    /// Tests if this circular cone, extended to be a double cone, intersects the `other` circular cone, also seen as a double cone.
    pub fn double_cones_intersect(&self, other: &Self) -> bool {
        match (self, other) {
            (CircularCone::Empty, _) => false,
            (_, CircularCone::Empty) => false,
            (CircularCone::Full, _) => true,
            (_, CircularCone::Full) => true,
            (
                CircularCone::Spread {
                    axis: axis1,
                    angle: angle1,
                },
                CircularCone::Spread {
                    axis: axis2,
                    angle: angle2,
                },
            ) => {
                let ang = axis1.dot(&axis2).acos();
                ang <= *angle1 + *angle2 || (N::pi() - ang) <= *angle1 + *angle2
            }
        }
    }

    /// Returns `true` if this cone contains `other`.
    pub fn contains(&self, other: &Self) -> bool {
        match (self, other) {
            (CircularCone::Empty, _) => false,
            (CircularCone::Full, _) => *other != CircularCone::Empty,
            (_, CircularCone::Full) => false,
            (_, CircularCone::Empty) => true,
            (
                CircularCone::Spread {
                    axis: axis1,
                    angle: angle1,
                },
                CircularCone::Spread {
                    axis: axis2,
                    angle: angle2,
                },
            ) => {
                let ang = axis1.dot(&axis2).acos();
                ang + *angle2 <= *angle1
            }
        }
    }

    /// Merges this cone with `other` in-place.
    pub fn merge(&mut self, other: &Self) {
        *self = self.merged(other)
    }

    /// Merges this cone with `other`.
    pub fn merged(&self, other: &Self) -> Self {
        match (self, other) {
            (CircularCone::Empty, _) => *other,
            (CircularCone::Full, _) => CircularCone::Full,
            (_, CircularCone::Empty) => *self,
            (_, CircularCone::Full) => CircularCone::Full,
            (
                CircularCone::Spread {
                    axis: axis1,
                    angle: angle1,
                },
                CircularCone::Spread {
                    axis: axis2,
                    angle: angle2,
                },
            ) => {
                let dot = axis1.dot(&axis2);
                let ang = dot.acos();
                if ang + *angle1 <= *angle2 {
                    // self is contained in other
                    // so there is nothing to do for the merge.
                    *self
                } else if ang + *angle2 <= *angle1 {
                    // other is contained in self
                    *other
                } else {
                    let ortho = **axis2 - **axis1 * dot;

                    if let Some(basis2) = Unit::try_new(ortho, N::zero()) {
                        let partial_sum = (ang + *angle2) * na::convert(0.5);
                        let (s, c) = partial_sum.sin_cos();
                        let new_axis = **axis1 * c + *basis2 * s;
                        CircularCone::Spread {
                            axis: Unit::new_unchecked(new_axis),
                            angle: partial_sum + *angle1 * na::convert(0.5),
                        }
                    } else {
                        // This should be unreachable because that means both axii are superimposed so one
                        // of the first `if` statements above should have kicked in already.
                        // But this might happen due to rounding errors. Just return the
                        // cone with the largest angle.
                        if *angle2 > *angle1 {
                            *other
                        } else {
                            *self
                        }
                    }
                }
            }
        }
    }
}

///// Checks if the unit vector `dir` is inside of the circular cone described by the given `axis` and apex half-angle `angle`.
//pub fn cone_contains_dir<N: RealField + Copy>(axis: &Unit<Vector<N>>, angle: N, dir: &Unit<Vector<N>>) -> bool {
//    let ang = axis.dot(dir).acos();
//    ang <= angle
//}
//
///// Checks if the unit vector `dir` is inside of the polar of the circular cone described by the given `axis` and apex half-angle `angle`.
//pub fn cone_polar_contains_dir<N: RealField + Copy>(
//    axis: &Unit<Vector<N>>,
//    angle: N,
//    dir: &Unit<Vector<N>>,
//) -> bool
//{
//    let ang = axis.dot(dir).acos();
//    ang >= angle + N::frac_pi_2()
//}