claxon/
input.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
// Claxon -- A FLAC decoding library in Rust
// Copyright 2014 Ruud van Asseldonk
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// A copy of the License has been included in the root of the repository.

//! Exposes traits that help reading data at the bit level with low overhead.
//!
//! The traits in this module deal with reading bytes (with a given endianness)
//! from a buffered reader, in such a way that still allows efficient
//! checksumming of the data read. There is also a bitstream which is used
//! internally to read the bitstream.

use std::cmp;
use std::io;

/// Similar to `std::io::BufRead`, but more performant.
///
/// There is no simple way to wrap a standard `BufRead` such that it can compute
/// checksums on consume. This is really something that needs a less restrictive
/// interface. Apart from enabling checksum computations, this buffered reader
/// has some convenience functions.
pub struct BufferedReader<R: io::Read> {
    /// The wrapped reader.
    inner: R,

    /// The buffer that holds data read from the inner reader.
    buf: Box<[u8]>,

    /// The index of the first byte in the buffer which has not been consumed.
    pos: u32,

    /// The number of bytes of the buffer which have meaningful content.
    num_valid: u32,
}

impl<R: io::Read> BufferedReader<R> {

    /// Wrap the reader in a new buffered reader.
    pub fn new(inner: R) -> BufferedReader<R> {
        // Use a large-ish buffer size, such that system call overhead is
        // negligible when replenishing the buffer. However, when fuzzing we
        // want to have small samples, and still trigger the case where we have
        // to replenish the buffer, so use a smaller buffer size there.
        #[cfg(not(fuzzing))]
        const CAPACITY: usize = 2048;

        #[cfg(fuzzing)]
        const CAPACITY: usize = 31;

        let buf = vec![0; CAPACITY].into_boxed_slice();
        BufferedReader {
            inner: inner,
            buf: buf,
            pos: 0,
            num_valid: 0,
        }
    }

    /// Destroys the buffered reader, returning the wrapped reader.
    ///
    /// Anything in the buffer will be lost.
    pub fn into_inner(self) -> R {
        self.inner
    }
}


/// Provides convenience methods to make input less cumbersome.
pub trait ReadBytes {
    /// Reads a single byte, failing on EOF.
    fn read_u8(&mut self) -> io::Result<u8>;

    /// Reads a single byte, not failing on EOF.
    fn read_u8_or_eof(&mut self) -> io::Result<Option<u8>>;

    /// Reads until the provided buffer is full.
    fn read_into(&mut self, buffer: &mut [u8]) -> io::Result<()>;

    /// Skips over the specified number of bytes.
    ///
    /// For a buffered reader, this can help a lot by just bumping a pointer.
    fn skip(&mut self, amount: u32) -> io::Result<()>;

    /// Reads two bytes and interprets them as a big-endian 16-bit unsigned integer.
    fn read_be_u16(&mut self) -> io::Result<u16> {
        let b0 = try!(self.read_u8()) as u16;
        let b1 = try!(self.read_u8()) as u16;
        Ok(b0 << 8 | b1)
    }

    /// Reads two bytes and interprets them as a big-endian 16-bit unsigned integer.
    fn read_be_u16_or_eof(&mut self) -> io::Result<Option<u16>> {
        if let Some(b0) = try!(self.read_u8_or_eof()) {
            if let Some(b1) = try!(self.read_u8_or_eof()) {
                return Ok(Some((b0 as u16) << 8 | (b1 as u16)));
            }
        }
        Ok(None)
    }

    /// Reads three bytes and interprets them as a big-endian 24-bit unsigned integer.
    fn read_be_u24(&mut self) -> io::Result<u32> {
        let b0 = try!(self.read_u8()) as u32;
        let b1 = try!(self.read_u8()) as u32;
        let b2 = try!(self.read_u8()) as u32;
        Ok(b0 << 16 | b1 << 8 | b2)
    }

    /// Reads four bytes and interprets them as a big-endian 32-bit unsigned integer.
    fn read_be_u32(&mut self) -> io::Result<u32> {
        let b0 = try!(self.read_u8()) as u32;
        let b1 = try!(self.read_u8()) as u32;
        let b2 = try!(self.read_u8()) as u32;
        let b3 = try!(self.read_u8()) as u32;
        Ok(b0 << 24 | b1 << 16 | b2 << 8 | b3)
    }

    /// Reads four bytes and interprets them as a little-endian 32-bit unsigned integer.
    fn read_le_u32(&mut self) -> io::Result<u32> {
        let b0 = try!(self.read_u8()) as u32;
        let b1 = try!(self.read_u8()) as u32;
        let b2 = try!(self.read_u8()) as u32;
        let b3 = try!(self.read_u8()) as u32;
        Ok(b3 << 24 | b2 << 16 | b1 << 8 | b0)
    }
}

impl<R: io::Read> ReadBytes for BufferedReader<R>
{
    #[inline(always)]
    fn read_u8(&mut self) -> io::Result<u8> {
        if self.pos == self.num_valid {
            // The buffer was depleted, replenish it first.
            self.pos = 0;
            self.num_valid = try!(self.inner.read(&mut self.buf)) as u32;

            if self.num_valid == 0 {
                return Err(io::Error::new(io::ErrorKind::UnexpectedEof,
                                          "Expected one more byte."))
            }
        }

        // At this point there is at least one more byte in the buffer, we
        // checked that above. However, when using regular indexing, the
        // compiler still inserts a bounds check here. It is safe to avoid it.
        let byte = unsafe { *self.buf.get_unchecked(self.pos as usize) };
        self.pos += 1;
        Ok(byte)
    }

    fn read_u8_or_eof(&mut self) -> io::Result<Option<u8>> {
        if self.pos == self.num_valid {
            // The buffer was depleted, try to replenish it first.
            self.pos = 0;
            self.num_valid = try!(self.inner.read(&mut self.buf)) as u32;

            if self.num_valid == 0 {
                return Ok(None);
            }
        }

        Ok(Some(try!(self.read_u8())))
    }

    fn read_into(&mut self, buffer: &mut [u8]) -> io::Result<()> {
        let mut bytes_left = buffer.len();

        while bytes_left > 0 {
            let from = buffer.len() - bytes_left;
            let count = cmp::min(bytes_left, (self.num_valid - self.pos) as usize);
            buffer[from..from + count].copy_from_slice(
                &self.buf[self.pos as usize..self.pos as usize + count]);
            bytes_left -= count;
            self.pos += count as u32;

            if bytes_left > 0 {
                // Replenish the buffer if there is more to be read.
                self.pos = 0;
                self.num_valid = try!(self.inner.read(&mut self.buf)) as u32;
                if self.num_valid == 0 {
                    return Err(io::Error::new(io::ErrorKind::UnexpectedEof,
                                              "Expected more bytes."))
                }
            }
        }

        Ok(())
    }

    fn skip(&mut self, mut amount: u32) -> io::Result<()> {
        while amount > 0 {
            let num_left = self.num_valid - self.pos;
            let read_now = cmp::min(amount, num_left);
            self.pos += read_now;
            amount -= read_now;

            if amount > 0 {
                // If there is more to skip, refill the buffer first.
                self.pos = 0;
                self.num_valid = try!(self.inner.read(&mut self.buf)) as u32;

                if self.num_valid == 0 {
                    return Err(io::Error::new(io::ErrorKind::UnexpectedEof,
                                              "Expected more bytes."))
                }
            }
        }
        Ok(())
    }
}

impl<'r, R: ReadBytes> ReadBytes for &'r mut R {

    #[inline(always)]
    fn read_u8(&mut self) -> io::Result<u8> {
        (*self).read_u8()
    }

    fn read_u8_or_eof(&mut self) -> io::Result<Option<u8>> {
        (*self).read_u8_or_eof()
    }

    fn read_into(&mut self, buffer: &mut [u8]) -> io::Result<()> {
        (*self).read_into(buffer)
    }

    fn skip(&mut self, amount: u32) -> io::Result<()> {
        (*self).skip(amount)
    }
}

impl<T: AsRef<[u8]>> ReadBytes for io::Cursor<T> {

    fn read_u8(&mut self) -> io::Result<u8> {
        let pos = self.position();
        if pos < self.get_ref().as_ref().len() as u64 {
            self.set_position(pos + 1);
            Ok(self.get_ref().as_ref()[pos as usize])
        } else {
            Err(io::Error::new(io::ErrorKind::UnexpectedEof, "unexpected eof"))
        }
    }

    fn read_u8_or_eof(&mut self) -> io::Result<Option<u8>> {
        let pos = self.position();
        if pos < self.get_ref().as_ref().len() as u64 {
            self.set_position(pos + 1);
            Ok(Some(self.get_ref().as_ref()[pos as usize]))
        } else {
            Ok(None)
        }
    }

    fn read_into(&mut self, buffer: &mut [u8]) -> io::Result<()> {
        let pos = self.position();
        if pos + buffer.len() as u64 <= self.get_ref().as_ref().len() as u64 {
            let start = pos as usize;
            let end = pos as usize + buffer.len();
            buffer.copy_from_slice(&self.get_ref().as_ref()[start..end]);
            self.set_position(pos + buffer.len() as u64);
            Ok(())
        } else {
            Err(io::Error::new(io::ErrorKind::UnexpectedEof, "unexpected eof"))
        }
    }

    fn skip(&mut self, amount: u32) -> io::Result<()> {
        let pos = self.position();
        if pos + amount as u64 <= self.get_ref().as_ref().len() as u64 {
            self.set_position(pos + amount as u64);
            Ok(())
        } else {
            Err(io::Error::new(io::ErrorKind::UnexpectedEof, "unexpected eof"))
        }
    }
}

#[test]
fn verify_read_into_buffered_reader() {
    let mut reader = BufferedReader::new(io::Cursor::new(vec![2u8, 3, 5, 7, 11, 13, 17, 19, 23]));
    let mut buf1 = [0u8; 3];
    let mut buf2 = [0u8; 5];
    let mut buf3 = [0u8; 2];
    reader.read_into(&mut buf1).ok().unwrap();
    reader.read_into(&mut buf2).ok().unwrap();
    assert!(reader.read_into(&mut buf3).is_err());
    assert_eq!(&buf1[..], &[2u8, 3, 5]);
    assert_eq!(&buf2[..], &[7u8, 11, 13, 17, 19]);
}

#[test]
fn verify_read_into_cursor() {
    let mut cursor = io::Cursor::new(vec![2u8, 3, 5, 7, 11, 13, 17, 19, 23]);
    let mut buf1 = [0u8; 3];
    let mut buf2 = [0u8; 5];
    let mut buf3 = [0u8; 2];
    cursor.read_into(&mut buf1).ok().unwrap();
    cursor.read_into(&mut buf2).ok().unwrap();
    assert!(cursor.read_into(&mut buf3).is_err());
    assert_eq!(&buf1[..], &[2u8, 3, 5]);
    assert_eq!(&buf2[..], &[7u8, 11, 13, 17, 19]);
}

#[test]
fn verify_read_u8_buffered_reader() {
    let mut reader = BufferedReader::new(io::Cursor::new(vec![0u8, 2, 129, 89, 122]));
    assert_eq!(reader.read_u8().unwrap(), 0);
    assert_eq!(reader.read_u8().unwrap(), 2);
    assert_eq!(reader.read_u8().unwrap(), 129);
    assert_eq!(reader.read_u8().unwrap(), 89);
    assert_eq!(reader.read_u8_or_eof().unwrap(), Some(122));
    assert_eq!(reader.read_u8_or_eof().unwrap(), None);
    assert!(reader.read_u8().is_err());
}

#[test]
fn verify_read_u8_cursor() {
    let mut reader = io::Cursor::new(vec![0u8, 2, 129, 89, 122]);
    assert_eq!(reader.read_u8().unwrap(), 0);
    assert_eq!(reader.read_u8().unwrap(), 2);
    assert_eq!(reader.read_u8().unwrap(), 129);
    assert_eq!(reader.read_u8().unwrap(), 89);
    assert_eq!(reader.read_u8_or_eof().unwrap(), Some(122));
    assert_eq!(reader.read_u8_or_eof().unwrap(), None);
    assert!(reader.read_u8().is_err());
}

#[test]
fn verify_read_be_u16_buffered_reader() {
    let mut reader = BufferedReader::new(io::Cursor::new(vec![0u8, 2, 129, 89, 122]));
    assert_eq!(reader.read_be_u16().ok(), Some(2));
    assert_eq!(reader.read_be_u16().ok(), Some(33113));
    assert!(reader.read_be_u16().is_err());
}

#[test]
fn verify_read_be_u16_cursor() {
    let mut cursor = io::Cursor::new(vec![0u8, 2, 129, 89, 122]);
    assert_eq!(cursor.read_be_u16().ok(), Some(2));
    assert_eq!(cursor.read_be_u16().ok(), Some(33113));
    assert!(cursor.read_be_u16().is_err());
}

#[test]
fn verify_read_be_u24_buffered_reader() {
    let mut reader = BufferedReader::new(io::Cursor::new(vec![0u8, 0, 2, 0x8f, 0xff, 0xf3, 122]));
    assert_eq!(reader.read_be_u24().ok(), Some(2));
    assert_eq!(reader.read_be_u24().ok(), Some(9_437_171));
    assert!(reader.read_be_u24().is_err());
}

#[test]
fn verify_read_be_u24_cursor() {
    let mut cursor = io::Cursor::new(vec![0u8, 0, 2, 0x8f, 0xff, 0xf3, 122]);
    assert_eq!(cursor.read_be_u24().ok(), Some(2));
    assert_eq!(cursor.read_be_u24().ok(), Some(9_437_171));
    assert!(cursor.read_be_u24().is_err());
}

#[test]
fn verify_read_be_u32_buffered_reader() {
    let mut reader = BufferedReader::new(io::Cursor::new(vec![0u8, 0, 0, 2, 0x80, 0x01, 0xff, 0xe9, 0]));
    assert_eq!(reader.read_be_u32().ok(), Some(2));
    assert_eq!(reader.read_be_u32().ok(), Some(2_147_614_697));
    assert!(reader.read_be_u32().is_err());
}

#[test]
fn verify_read_be_u32_cursor() {
    let mut cursor = io::Cursor::new(vec![0u8, 0, 0, 2, 0x80, 0x01, 0xff, 0xe9, 0]);
    assert_eq!(cursor.read_be_u32().ok(), Some(2));
    assert_eq!(cursor.read_be_u32().ok(), Some(2_147_614_697));
    assert!(cursor.read_be_u32().is_err());
}

#[test]
fn verify_read_le_u32_buffered_reader() {
    let mut reader = BufferedReader::new(io::Cursor::new(vec![2u8, 0, 0, 0, 0xe9, 0xff, 0x01, 0x80, 0]));
    assert_eq!(reader.read_le_u32().ok(), Some(2));
    assert_eq!(reader.read_le_u32().ok(), Some(2_147_614_697));
    assert!(reader.read_le_u32().is_err());
}

#[test]
fn verify_read_le_u32_cursor() {
    let mut reader = io::Cursor::new(vec![2u8, 0, 0, 0, 0xe9, 0xff, 0x01, 0x80, 0]);
    assert_eq!(reader.read_le_u32().ok(), Some(2));
    assert_eq!(reader.read_le_u32().ok(), Some(2_147_614_697));
    assert!(reader.read_le_u32().is_err());
}

/// Left shift that does not panic when shifting by the integer width.
#[inline(always)]
fn shift_left(x: u8, shift: u32) -> u8 {
    debug_assert!(shift <= 8);

    // We cannot shift a u8 by 8 or more, because Rust panics when shifting by
    // the integer width. But we can definitely shift a u32.
    ((x as u32) << shift) as u8
}

/// Right shift that does not panic when shifting by the integer width.
#[inline(always)]
fn shift_right(x: u8, shift: u32) -> u8 {
    debug_assert!(shift <= 8);

    // We cannot shift a u8 by 8 or more, because Rust panics when shifting by
    // the integer width. But we can definitely shift a u32.
    ((x as u32) >> shift) as u8
}

/// Wraps a `Reader` to facilitate reading that is not byte-aligned.
pub struct Bitstream<R: ReadBytes> {
    /// The source where bits are read from.
    reader: R,
    /// Data read from the reader, but not yet fully consumed.
    data: u8,
    /// The number of bits of `data` that have not been consumed.
    bits_left: u32,
}

impl<R: ReadBytes> Bitstream<R> {
    /// Wraps the reader with a reader that facilitates reading individual bits.
    pub fn new(reader: R) -> Bitstream<R> {
        Bitstream {
            reader: reader,
            data: 0,
            bits_left: 0,
        }
    }

    /// Generates a bitmask with 1s in the `bits` most significant bits.
    #[inline(always)]
    fn mask_u8(bits: u32) -> u8 {
        debug_assert!(bits <= 8);

        shift_left(0xff, 8 - bits)
    }

    /// Reads a single bit.
    ///
    /// Reading a single bit can be done more efficiently than reading
    /// more than one bit, because a bit never straddles a byte boundary.
    #[inline(always)]
    pub fn read_bit(&mut self) -> io::Result<bool> {

        // If no bits are left, we will need to read the next byte.
        let result = if self.bits_left == 0 {
            let fresh_byte = try!(self.reader.read_u8());

            // What remains later are the 7 least significant bits.
            self.data = fresh_byte << 1;
            self.bits_left = 7;

            // What we report is the most significant bit of the fresh byte.
            fresh_byte & 0b1000_0000
        } else {
            // Consume the most significant bit of the buffer byte.
            let bit = self.data & 0b1000_0000;
            self.data = self.data << 1;
            self.bits_left = self.bits_left - 1;
            bit
        };

        Ok(result != 0)
    }

    /// Reads bits until a 1 is read, and returns the number of zeros read.
    ///
    /// Because the reader buffers a byte internally, reading unary can be done
    /// more efficiently than by just reading bit by bit.
    #[inline(always)]
    pub fn read_unary(&mut self) -> io::Result<u32> {
        // Start initially with the number of zeros that are in the buffer byte
        // already (counting from the most significant bit).
        let mut n = self.data.leading_zeros();

        // If the number of zeros plus the one following it was not more than
        // the bytes left, then there is no need to look further.
        if n < self.bits_left {
            // Note: this shift never shifts by more than 7 places, because
            // bits_left is always at most 7 in between read calls, and the
            // least significant bit of the buffer byte is 0 in that case. So
            // we count either 8 zeros, or less than 7. In the former case we
            // would not have taken this branch, in the latter the shift below
            // is safe.
            self.data = self.data << (n + 1);
            self.bits_left = self.bits_left - (n + 1);
        } else {
            // We inspected more bits than available, so our count is incorrect,
            // and we need to look at the next byte.
            n = self.bits_left;

            // Continue reading bytes until we encounter a one.
            loop {
                let fresh_byte = try!(self.reader.read_u8());
                let zeros = fresh_byte.leading_zeros();
                n = n + zeros;
                if zeros < 8 {
                    // We consumed the zeros, plus the one following it.
                    self.bits_left = 8 - (zeros + 1);
                    self.data = shift_left(fresh_byte, zeros + 1);
                    break;
                }
            }
        }

        Ok(n)
    }

    /// Reads at most eight bits.
    #[inline(always)]
    pub fn read_leq_u8(&mut self, bits: u32) -> io::Result<u8> {
        // Of course we can read no more than 8 bits, but we do not want the
        // performance overhead of the assertion, so only do it in debug mode.
        debug_assert!(bits <= 8);

        // If not enough bits left, we will need to read the next byte.
        let result = if self.bits_left < bits {
            // Most significant bits are shifted to the right position already.
            let msb = self.data;

            // Read a single byte.
            self.data = try!(self.reader.read_u8());

            // From the next byte, we take the additional bits that we need.
            // Those start at the most significant bit, so we need to shift so
            // that it does not overlap with what we have already.
            let lsb = (self.data & Bitstream::<R>::mask_u8(bits - self.bits_left))
                >> self.bits_left;

            // Shift out the bits that we have consumed.
            self.data = shift_left(self.data, bits - self.bits_left);
            self.bits_left = 8 - (bits - self.bits_left);

            msb | lsb
        } else {
            let result = self.data & Bitstream::<R>::mask_u8(bits);

            // Shift out the bits that we have consumed.
            self.data = self.data << bits;
            self.bits_left = self.bits_left - bits;

            result
        };

        // If there are more than 8 bits left, we read too far.
        debug_assert!(self.bits_left < 8);

        // The least significant bits should be zero.
        debug_assert_eq!(self.data & !Bitstream::<R>::mask_u8(self.bits_left), 0u8);

        // The resulting data is padded with zeros in the least significant
        // bits, but we want to pad in the most significant bits, so shift.
        Ok(shift_right(result, 8 - bits))
    }

    /// Read n bits, where 8 < n <= 16.
    #[inline(always)]
    pub fn read_gt_u8_leq_u16(&mut self, bits: u32) -> io::Result<u32> {
        debug_assert!((8 < bits) && (bits <= 16));

        // The most significant bits of the current byte are valid. Shift them
        // by 2 so they become the most significant bits of the 10 bit number.
        let mask_msb = 0xffffffff << (bits - self.bits_left);
        let msb = ((self.data as u32) << (bits - 8)) & mask_msb;

        // Continue reading the next bits, because no matter how many bits were
        // still left, there were less than 10.
        let bits_to_read = bits - self.bits_left;
        let fresh_byte = try!(self.reader.read_u8()) as u32;
        let lsb = if bits_to_read >= 8 {
            fresh_byte << (bits_to_read - 8)
        } else {
            fresh_byte >> (8 - bits_to_read)
        };
        let combined = msb | lsb;

        let result = if bits_to_read <= 8 {
            // We have all bits already, update the internal state. If no
            // bits are left we might shift by 8 which is invalid, but in that
            // case the value is not used, so a masked shift is appropriate.
            self.bits_left = 8 - bits_to_read;
            self.data = fresh_byte.wrapping_shl(8 - self.bits_left) as u8;
            combined
        } else {
            // We need to read one more byte to get the final bits.
            let fresher_byte = try!(self.reader.read_u8()) as u32;
            let lsb = fresher_byte >> (16 - bits_to_read);

            // Update the reader state. The wrapping shift is appropriate for
            // the same reason as above.
            self.bits_left = 16 - bits_to_read;
            self.data = fresher_byte.wrapping_shl(8 - self.bits_left) as u8;

            combined | lsb
        };

        Ok(result)
    }

    /// Reads at most 16 bits.
    #[inline(always)]
    pub fn read_leq_u16(&mut self, bits: u32) -> io::Result<u16> {
        // As with read_leq_u8, this only makes sense if we read <= 16 bits.
        debug_assert!(bits <= 16);

        // Note: the following is not the most efficient implementation
        // possible, but it avoids duplicating the complexity of `read_leq_u8`.

        if bits <= 8 {
            let result = try!(self.read_leq_u8(bits));
            Ok(result as u16)
        } else {
            // First read the 8 most significant bits, then read what is left.
            let msb = try!(self.read_leq_u8(8)) as u16;
            let lsb = try!(self.read_leq_u8(bits - 8)) as u16;
            Ok((msb << (bits - 8)) | lsb)
        }
    }

    /// Reads at most 32 bits.
    #[inline(always)]
    pub fn read_leq_u32(&mut self, bits: u32) -> io::Result<u32> {
        // As with read_leq_u8, this only makes sense if we read <= 32 bits.
        debug_assert!(bits <= 32);

        // Note: the following is not the most efficient implementation
        // possible, but it avoids duplicating the complexity of `read_leq_u8`.

        if bits <= 16 {
            let result = try!(self.read_leq_u16(bits));
            Ok(result as u32)
        } else {
            // First read the 16 most significant bits, then read what is left.
            let msb = try!(self.read_leq_u16(16)) as u32;
            let lsb = try!(self.read_leq_u16(bits - 16)) as u32;
            Ok((msb << (bits - 16)) | lsb)
        }
    }
}

#[test]
fn verify_read_bit() {
    let data = io::Cursor::new(vec![0b1010_0100, 0b1110_0001]);
    let mut bits = Bitstream::new(BufferedReader::new(data));

    assert_eq!(bits.read_bit().unwrap(), true);
    assert_eq!(bits.read_bit().unwrap(), false);
    assert_eq!(bits.read_bit().unwrap(), true);
    // Mix in reading more bits as well, to ensure that they are compatible.
    assert_eq!(bits.read_leq_u8(1).unwrap(), 0);
    assert_eq!(bits.read_bit().unwrap(), false);
    assert_eq!(bits.read_bit().unwrap(), true);
    assert_eq!(bits.read_bit().unwrap(), false);
    assert_eq!(bits.read_bit().unwrap(), false);

    assert_eq!(bits.read_bit().unwrap(), true);
    assert_eq!(bits.read_bit().unwrap(), true);
    assert_eq!(bits.read_bit().unwrap(), true);
    assert_eq!(bits.read_leq_u8(2).unwrap(), 0);
    assert_eq!(bits.read_bit().unwrap(), false);
    assert_eq!(bits.read_bit().unwrap(), false);
    assert_eq!(bits.read_bit().unwrap(), true);

    assert!(bits.read_bit().is_err());
}

#[test]
fn verify_read_unary() {
    let data = io::Cursor::new(vec![
        0b1010_0100, 0b1000_0000, 0b0010_0000, 0b0000_0000, 0b0000_1010]);
    let mut bits = Bitstream::new(BufferedReader::new(data));

    assert_eq!(bits.read_unary().unwrap(), 0);
    assert_eq!(bits.read_unary().unwrap(), 1);
    assert_eq!(bits.read_unary().unwrap(), 2);

    // The ending one is after the first byte boundary.
    assert_eq!(bits.read_unary().unwrap(), 2);

    assert_eq!(bits.read_unary().unwrap(), 9);

    // This one skips a full byte of zeros.
    assert_eq!(bits.read_unary().unwrap(), 17);

    // Verify that the ending position is still correct.
    assert_eq!(bits.read_leq_u8(3).unwrap(), 0b010);
    assert!(bits.read_bit().is_err());
}

#[test]
fn verify_read_leq_u8() {
    let data = io::Cursor::new(vec![0b1010_0101,
                                    0b1110_0001,
                                    0b1101_0010,
                                    0b0101_0101,
                                    0b0111_0011,
                                    0b0011_1111,
                                    0b1010_1010,
                                    0b0000_1100]);
    let mut bits = Bitstream::new(BufferedReader::new(data));

    assert_eq!(bits.read_leq_u8(0).unwrap(), 0);
    assert_eq!(bits.read_leq_u8(1).unwrap(), 1);
    assert_eq!(bits.read_leq_u8(1).unwrap(), 0);
    assert_eq!(bits.read_leq_u8(2).unwrap(), 0b10);
    assert_eq!(bits.read_leq_u8(2).unwrap(), 0b01);
    assert_eq!(bits.read_leq_u8(3).unwrap(), 0b011);
    assert_eq!(bits.read_leq_u8(3).unwrap(), 0b110);
    assert_eq!(bits.read_leq_u8(4).unwrap(), 0b0001);
    assert_eq!(bits.read_leq_u8(5).unwrap(), 0b11010);
    assert_eq!(bits.read_leq_u8(6).unwrap(), 0b010010);
    assert_eq!(bits.read_leq_u8(7).unwrap(), 0b1010101);
    assert_eq!(bits.read_leq_u8(8).unwrap(), 0b11001100);
    assert_eq!(bits.read_leq_u8(6).unwrap(), 0b111111);
    assert_eq!(bits.read_leq_u8(8).unwrap(), 0b10101010);
    assert_eq!(bits.read_leq_u8(4).unwrap(), 0b0000);
    assert_eq!(bits.read_leq_u8(1).unwrap(), 1);
    assert_eq!(bits.read_leq_u8(1).unwrap(), 1);
    assert_eq!(bits.read_leq_u8(2).unwrap(), 0b00);
}

#[test]
fn verify_read_gt_u8_get_u16() {
    let data = io::Cursor::new(vec![0b1010_0101, 0b1110_0001, 0b1101_0010, 0b0101_0101, 0b1111_0000]);
    let mut bits = Bitstream::new(BufferedReader::new(data));

    assert_eq!(bits.read_gt_u8_leq_u16(10).unwrap(), 0b1010_0101_11);
    assert_eq!(bits.read_gt_u8_leq_u16(10).unwrap(), 0b10_0001_1101);
    assert_eq!(bits.read_leq_u8(3).unwrap(), 0b001);
    assert_eq!(bits.read_gt_u8_leq_u16(10).unwrap(), 0b0_0101_0101_1);
    assert_eq!(bits.read_leq_u8(7).unwrap(), 0b111_0000);
    assert!(bits.read_gt_u8_leq_u16(10).is_err());
}

#[test]
fn verify_read_leq_u16() {
    let data = io::Cursor::new(vec![0b1010_0101, 0b1110_0001, 0b1101_0010, 0b0101_0101]);
    let mut bits = Bitstream::new(BufferedReader::new(data));

    assert_eq!(bits.read_leq_u16(0).unwrap(), 0);
    assert_eq!(bits.read_leq_u16(1).unwrap(), 1);
    assert_eq!(bits.read_leq_u16(13).unwrap(), 0b010_0101_1110_00);
    assert_eq!(bits.read_leq_u16(9).unwrap(), 0b01_1101_001);
}

#[test]
fn verify_read_leq_u32() {
    let data = io::Cursor::new(vec![0b1010_0101, 0b1110_0001, 0b1101_0010, 0b0101_0101]);
    let mut bits = Bitstream::new(BufferedReader::new(data));

    assert_eq!(bits.read_leq_u32(1).unwrap(), 1);
    assert_eq!(bits.read_leq_u32(17).unwrap(), 0b010_0101_1110_0001_11);
    assert_eq!(bits.read_leq_u32(14).unwrap(), 0b01_0010_0101_0101);
}

#[test]
fn verify_read_mixed() {
    // These test data are warm-up samples from an actual stream.
    let data = io::Cursor::new(vec![0x03, 0xc7, 0xbf, 0xe5, 0x9b, 0x74, 0x1e, 0x3a, 0xdd, 0x7d,
                                    0xc5, 0x5e, 0xf6, 0xbf, 0x78, 0x1b, 0xbd]);
    let mut bits = Bitstream::new(BufferedReader::new(data));

    assert_eq!(bits.read_leq_u8(6).unwrap(), 0);
    assert_eq!(bits.read_leq_u8(1).unwrap(), 1);
    let minus = 1u32 << 16;
    assert_eq!(bits.read_leq_u32(17).unwrap(), minus | (-14401_i16 as u16 as u32));
    assert_eq!(bits.read_leq_u32(17).unwrap(), minus | (-13514_i16 as u16 as u32));
    assert_eq!(bits.read_leq_u32(17).unwrap(), minus | (-12168_i16 as u16 as u32));
    assert_eq!(bits.read_leq_u32(17).unwrap(), minus | (-10517_i16 as u16 as u32));
    assert_eq!(bits.read_leq_u32(17).unwrap(), minus | (-09131_i16 as u16 as u32));
    assert_eq!(bits.read_leq_u32(17).unwrap(), minus | (-08489_i16 as u16 as u32));
    assert_eq!(bits.read_leq_u32(17).unwrap(), minus | (-08698_i16 as u16 as u32));
}