ncollide3d/partitioning/bvh.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
use crate::partitioning::{
BVTNodeId, BestFirstVisitStatus, BestFirstVisitor, DBVTNodeId, SimultaneousVisitor,
VisitStatus, Visitor, BVT, DBVT,
};
use na::RealField;
use std::cmp::Ordering;
use std::collections::BinaryHeap;
/// Trait implemented by Bounding Volume Hierarchy.
pub trait BVH<T, BV> {
/// Type of a node identifiers on this BVH.
type Node: Copy;
/// The root of the BVH.
fn root(&self) -> Option<Self::Node>;
/// The number of children of the given node.
fn num_children(&self, node: Self::Node) -> usize;
/// The i-th child of the given node.
fn child(&self, i: usize, node: Self::Node) -> Self::Node;
/// The bounding volume and data contained by the given node.
fn content(&self, node: Self::Node) -> (&BV, Option<&T>);
/// Traverses this BVH using a visitor.
fn visit(&self, visitor: &mut impl Visitor<T, BV>) {
// FIXME: find a way to avoid the allocation.
let mut stack = Vec::new();
if let Some(root) = self.root() {
stack.push(root);
while let Some(node) = stack.pop() {
let content = self.content(node);
match visitor.visit(content.0, content.1) {
VisitStatus::Continue => {
for i in 0..self.num_children(node) {
stack.push(self.child(i, node))
}
}
VisitStatus::ExitEarly => return,
VisitStatus::Stop => {}
}
}
}
}
/// Visits the bounding volume test tree implicitly formed with `other`.
fn visit_bvtt(&self, other: &impl BVH<T, BV>, visitor: &mut impl SimultaneousVisitor<T, BV>) {
// FIXME: find a way to avoid the allocation.
let mut stack = Vec::new();
if let (Some(root1), Some(root2)) = (self.root(), other.root()) {
stack.push((root1, root2));
while let Some((node1, node2)) = stack.pop() {
let content1 = self.content(node1);
let content2 = other.content(node2);
match visitor.visit(content1.0, content1.1, content2.0, content2.1) {
VisitStatus::Continue => {
let nchild1 = self.num_children(node1);
let nchild2 = other.num_children(node2);
match (nchild1, nchild2) {
(0, 0) => {}
(0, _) => {
for j in 0..nchild2 {
let n2 = other.child(j, node2);
stack.push((node1, n2))
}
}
(_, 0) => {
for i in 0..nchild1 {
let n1 = self.child(i, node1);
stack.push((n1, node2))
}
}
(_, _) => {
for i in 0..nchild1 {
let n1 = self.child(i, node1);
for j in 0..nchild2 {
let n2 = other.child(j, node2);
stack.push((n1, n2))
}
}
}
}
}
VisitStatus::ExitEarly => return,
VisitStatus::Stop => {}
}
}
}
}
/// Performs a best-first-search on the BVH.
///
/// Returns the content of the leaf with the smallest associated cost, and a result of
/// user-defined type.
fn best_first_search<N, BFS>(&self, visitor: &mut BFS) -> Option<(Self::Node, BFS::Result)>
where
N: RealField + Copy,
BFS: BestFirstVisitor<N, T, BV>,
{
let mut queue: BinaryHeap<WeightedValue<N, Self::Node>> = BinaryHeap::new();
// The lowest cost collision with actual scene geometry.
let mut best_cost = N::max_value().unwrap();
let mut best_result = None;
if let Some(root) = self.root() {
let (root_bv, root_data) = self.content(root);
match visitor.visit(best_cost, root_bv, root_data) {
BestFirstVisitStatus::Continue { cost, result } => {
// Root may be a leaf node
if let Some(res) = result {
best_cost = cost;
best_result = Some((root, res));
}
queue.push(WeightedValue::new(root, -cost))
}
BestFirstVisitStatus::Stop => return None,
BestFirstVisitStatus::ExitEarly(result) => return result.map(|res| (root, res)),
}
while let Some(entry) = queue.pop() {
if -entry.cost >= best_cost {
// No BV left in the tree that has a lower cost than best_result
break; // Solution found.
}
for i in 0..self.num_children(entry.value) {
let child = self.child(i, entry.value);
let (child_bv, child_data) = self.content(child);
match visitor.visit(best_cost, child_bv, child_data) {
BestFirstVisitStatus::Continue { cost, result } => {
if cost < best_cost {
if result.is_some() {
// This is the nearest collision so far
best_cost = cost;
best_result = result.map(|res| (child, res));
}
// BV may have a child with lower cost, evaluate it next.
queue.push(WeightedValue::new(child, -cost))
}
}
BestFirstVisitStatus::ExitEarly(result) => {
return result.map(|res| (child, res)).or(best_result)
}
BestFirstVisitStatus::Stop => {}
}
}
}
}
best_result
}
}
/// An enum grouping references to all the BVH implementations on ncollide.
#[derive(Copy, Clone)]
pub enum BVHImpl<'a, N: 'a + RealField + Copy, T: 'a, BV: 'a> {
/// A static binary bounding volume tree.
BVT(&'a BVT<T, BV>),
/// A dynamic binary bounding volume tree.
DBVT(&'a DBVT<N, T, BV>),
}
/// The Id of a node of a BVH.
pub enum BVHNodeId {
// The Id of a BVT.
BVTNodeId(BVTNodeId),
// The Id of a DBVT.
DBVTNodeId(DBVTNodeId),
}
impl<'a, N: RealField + Copy, T, BV> BVHImpl<'a, N, T, BV> {
/// Gets the underlying reference to a BVT, or panics if this is not a `BVTImpl::BVT`.
#[inline]
pub fn unwrap_bvt(self) -> &'a BVT<T, BV> {
match self {
BVHImpl::BVT(bvt) => bvt,
_ => panic!("This BVTImpl is not a BVT."),
}
}
/// Gets the underlying reference to a DBVT, or panics if this is not a `BVTImpl::DBVT`.
#[inline]
pub fn unwrap_dbvt(self) -> &'a DBVT<N, T, BV> {
match self {
BVHImpl::DBVT(dbvt) => dbvt,
_ => panic!("This BVTImpl is not a DBVT."),
}
}
/// Traverses this tree using a visitor.
pub fn visit(self, visitor: &mut impl Visitor<T, BV>) {
match self {
BVHImpl::BVT(bvt) => bvt.visit(visitor),
BVHImpl::DBVT(dbvt) => dbvt.visit(visitor),
}
}
/// Visits the bounding volume traversal tree implicitly formed with `other`.
pub fn visit_bvtt(
self,
other: BVHImpl<N, T, BV>,
visitor: &mut impl SimultaneousVisitor<T, BV>,
) {
// Note: the dispatch on each pair is split into two method to avoid
// having to write a manually a match over each possible pair.
match other {
BVHImpl::BVT(bvh2) => self.visit_bvtt_dispatch(bvh2, visitor),
BVHImpl::DBVT(bvh2) => self.visit_bvtt_dispatch(bvh2, visitor),
}
}
fn visit_bvtt_dispatch(
self,
bvh2: &impl BVH<T, BV>,
visitor: &mut impl SimultaneousVisitor<T, BV>,
) {
match self {
BVHImpl::BVT(bvh1) => bvh1.visit_bvtt(bvh2, visitor),
BVHImpl::DBVT(bvh1) => bvh1.visit_bvtt(bvh2, visitor),
}
}
/// Performs a best-fist-search on the tree.
///
/// Returns the content of the leaf with the smallest associated cost, and a result of
/// user-defined type.
pub fn best_first_search<BFS>(self, visitor: &mut BFS) -> Option<(BVHNodeId, BFS::Result)>
where
BFS: BestFirstVisitor<N, T, BV>,
{
match self {
BVHImpl::BVT(bvt) => bvt
.best_first_search(visitor)
.map(|res| (BVHNodeId::BVTNodeId(res.0), res.1)),
BVHImpl::DBVT(dbvt) => dbvt
.best_first_search(visitor)
.map(|res| (BVHNodeId::DBVTNodeId(res.0), res.1)),
}
}
}
struct WeightedValue<N, T> {
pub value: T,
pub cost: N,
}
impl<N, T> WeightedValue<N, T> {
/// Creates a new reference packed with a cost value.
#[inline]
pub fn new(value: T, cost: N) -> WeightedValue<N, T> {
WeightedValue {
value: value,
cost: cost,
}
}
}
impl<N: PartialEq, T> PartialEq for WeightedValue<N, T> {
#[inline]
fn eq(&self, other: &WeightedValue<N, T>) -> bool {
self.cost.eq(&other.cost)
}
}
impl<N: PartialEq, T> Eq for WeightedValue<N, T> {}
impl<N: PartialOrd, T> PartialOrd for WeightedValue<N, T> {
#[inline]
fn partial_cmp(&self, other: &WeightedValue<N, T>) -> Option<Ordering> {
self.cost.partial_cmp(&other.cost)
}
}
impl<N: PartialOrd, T> Ord for WeightedValue<N, T> {
#[inline]
fn cmp(&self, other: &WeightedValue<N, T>) -> Ordering {
if self.cost < other.cost {
Ordering::Less
} else if self.cost > other.cost {
Ordering::Greater
} else {
Ordering::Equal
}
}
}