Struct openrr_planner::JacobianIkSolver
source · pub struct JacobianIkSolver<T>where
T: RealField,{
pub allowable_target_distance: T,
pub allowable_target_angle: T,
pub jacobian_multiplier: T,
pub num_max_try: usize,
/* private fields */
}
Expand description
Inverse Kinematics Solver using Jacobian matrix
Fields§
§allowable_target_distance: T
If the distance is smaller than this value, it is reached.
allowable_target_angle: T
If the angle distance is smaller than this value, it is reached.
jacobian_multiplier: T
multiplier for jacobian
num_max_try: usize
How many times the joints are tried to be moved
Implementations§
source§impl<T> JacobianIkSolver<T>
impl<T> JacobianIkSolver<T>
sourcepub fn new(
allowable_target_distance: T,
allowable_target_angle: T,
jacobian_multiplier: T,
num_max_try: usize,
) -> JacobianIkSolver<T>
pub fn new( allowable_target_distance: T, allowable_target_angle: T, jacobian_multiplier: T, num_max_try: usize, ) -> JacobianIkSolver<T>
Create instance of JacobianIkSolver
.
JacobianIkSolverBuilder
is available instead of calling this new
method.
§Examples
let solver = k::JacobianIkSolver::new(0.01, 0.01, 0.5, 100);
sourcepub fn set_nullspace_function(
&mut self,
func: Box<dyn Fn(&[T]) -> Vec<T> + Sync + Send>,
)
pub fn set_nullspace_function( &mut self, func: Box<dyn Fn(&[T]) -> Vec<T> + Sync + Send>, )
Set a null space function for redundant manipulator.
§Examples
let mut solver = k::JacobianIkSolver::new(0.01, 0.01, 0.5, 100);
solver.set_nullspace_function(Box::new(
k::create_reference_positions_nullspace_function(
vec![0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
vec![0.1, 0.1, 0.1, 1.0, 0.1, 0.5, 0.0],
),
));
sourcepub fn clear_nullspace_function(&mut self)
pub fn clear_nullspace_function(&mut self)
Clear the null function which is set by set_nullspace_function
.
Trait Implementations§
source§impl<T> Debug for JacobianIkSolver<T>
impl<T> Debug for JacobianIkSolver<T>
source§impl<T> Default for JacobianIkSolver<T>
impl<T> Default for JacobianIkSolver<T>
source§fn default() -> JacobianIkSolver<T>
fn default() -> JacobianIkSolver<T>
Returns the “default value” for a type. Read more
source§impl<T> InverseKinematicsSolver<T> for JacobianIkSolver<T>
impl<T> InverseKinematicsSolver<T> for JacobianIkSolver<T>
source§fn solve(
&self,
arm: &SerialChain<T>,
target_pose: &Isometry<T, Unit<Quaternion<T>>, 3>,
) -> Result<(), Error>
fn solve( &self, arm: &SerialChain<T>, target_pose: &Isometry<T, Unit<Quaternion<T>>, 3>, ) -> Result<(), Error>
Set joint positions of arm
to reach the target_pose
§Examples
use k::prelude::*;
let chain = k::Chain::<f32>::from_urdf_file("urdf/sample.urdf").unwrap();
// Create sub-`Chain` to make it easy to use inverse kinematics
let target_joint_name = "r_wrist_pitch";
let r_wrist = chain.find(target_joint_name).unwrap();
let mut arm = k::SerialChain::from_end(r_wrist);
println!("arm: {arm}");
// Set joint positions of `arm`
let positions = vec![0.1, 0.2, 0.0, -0.5, 0.0, -0.3];
arm.set_joint_positions(&positions).unwrap();
println!("initial positions={:?}", arm.joint_positions());
// Get the transform of the end of the manipulator (forward kinematics)
let mut target = arm.update_transforms().last().unwrap().clone();
println!("initial target pos = {}", target.translation);
println!("move x: -0.1");
target.translation.vector.x -= 0.1;
// Create IK solver with default settings
let solver = k::JacobianIkSolver::default();
// solve and move the manipulator positions
solver.solve(&arm, &target).unwrap();
println!("solved positions={:?}", arm.joint_positions());
source§fn solve_with_constraints(
&self,
arm: &SerialChain<T>,
target_pose: &Isometry<T, Unit<Quaternion<T>>, 3>,
constraints: &Constraints,
) -> Result<(), Error>
fn solve_with_constraints( &self, arm: &SerialChain<T>, target_pose: &Isometry<T, Unit<Quaternion<T>>, 3>, constraints: &Constraints, ) -> Result<(), Error>
Set joint positions of arm
to reach the target_pose
with constraints
If you want to loose the constraints, use this method. For example, ignoring rotation with an axis. It enables to use the arms which has less than six DoF.
§Example
use k::prelude::*;
let chain = k::Chain::<f32>::from_urdf_file("urdf/sample.urdf").unwrap();
let target_joint_name = "r_wrist_pitch";
let r_wrist = chain.find(target_joint_name).unwrap();
let mut arm = k::SerialChain::from_end(r_wrist);
let positions = vec![0.1, 0.2, 0.0, -0.5, 0.0, -0.3];
arm.set_joint_positions(&positions).unwrap();
let mut target = arm.update_transforms().last().unwrap().clone();
target.translation.vector.x -= 0.1;
let solver = k::JacobianIkSolver::default();
let mut constraints = k::Constraints::default();
constraints.rotation_x = false;
constraints.rotation_z = false;
solver
.solve_with_constraints(&arm, &target, &constraints)
.unwrap_or_else(|err| {
println!("Err: {err}");
});
Auto Trait Implementations§
impl<T> Freeze for JacobianIkSolver<T>where
T: Freeze,
impl<T> !RefUnwindSafe for JacobianIkSolver<T>
impl<T> Send for JacobianIkSolver<T>
impl<T> Sync for JacobianIkSolver<T>
impl<T> Unpin for JacobianIkSolver<T>where
T: Unpin,
impl<T> !UnwindSafe for JacobianIkSolver<T>
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Convert
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Convert
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§impl<T> Pointable for T
impl<T> Pointable for T
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.