nalgebra::base

Type Alias Vector

Source
pub type Vector<T, D, S> = Matrix<T, D, U1, S>;
Expand description

A matrix with one column and D rows.

Aliased Type§

struct Vector<T, D, S> {
    pub data: S,
    /* private fields */
}

Fields§

§data: S

The data storage that contains all the matrix components. Disappointed?

Well, if you came here to see how you can access the matrix components, you may be in luck: you can access the individual components of all vectors with compile-time dimensions <= 6 using field notation like this: vec.x, vec.y, vec.z, vec.w, vec.a, vec.b. Reference and assignation work too:

let mut vec = Vector3::new(1.0, 2.0, 3.0);
vec.x = 10.0;
vec.y += 30.0;
assert_eq!(vec.x, 10.0);
assert_eq!(vec.y + 100.0, 132.0);

Similarly, for matrices with compile-time dimensions <= 6, you can use field notation like this: mat.m11, mat.m42, etc. The first digit identifies the row to address and the second digit identifies the column to address. So mat.m13 identifies the component at the first row and third column (note that the count of rows and columns start at 1 instead of 0 here. This is so we match the mathematical notation).

For all matrices and vectors, independently from their size, individual components can be accessed and modified using indexing: vec[20], mat[(20, 19)]. Here the indexing starts at 0 as you would expect.

Implementations§

Source§

impl<T, D: Dim, S> Vector<T, D, S>
where T: Scalar + Zero + ClosedAdd + ClosedMul, S: StorageMut<T, D>,

§BLAS functions

Source

pub fn axcpy<D2: Dim, SB>(&mut self, a: T, x: &Vector<T, D2, SB>, c: T, b: T)
where SB: Storage<T, D2>, ShapeConstraint: DimEq<D, D2>,

Computes self = a * x * c + b * self.

If b is zero, self is never read from.

§Examples:
let mut vec1 = Vector3::new(1.0, 2.0, 3.0);
let vec2 = Vector3::new(0.1, 0.2, 0.3);
vec1.axcpy(5.0, &vec2, 2.0, 5.0);
assert_eq!(vec1, Vector3::new(6.0, 12.0, 18.0));
Source

pub fn axpy<D2: Dim, SB>(&mut self, a: T, x: &Vector<T, D2, SB>, b: T)
where T: One, SB: Storage<T, D2>, ShapeConstraint: DimEq<D, D2>,

Computes self = a * x + b * self.

If b is zero, self is never read from.

§Examples:
let mut vec1 = Vector3::new(1.0, 2.0, 3.0);
let vec2 = Vector3::new(0.1, 0.2, 0.3);
vec1.axpy(10.0, &vec2, 5.0);
assert_eq!(vec1, Vector3::new(6.0, 12.0, 18.0));
Source

pub fn gemv<R2: Dim, C2: Dim, D3: Dim, SB, SC>( &mut self, alpha: T, a: &Matrix<T, R2, C2, SB>, x: &Vector<T, D3, SC>, beta: T, )
where T: One, SB: Storage<T, R2, C2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<D, R2> + AreMultipliable<R2, C2, D3, U1>,

Computes self = alpha * a * x + beta * self, where a is a matrix, x a vector, and alpha, beta two scalars.

If beta is zero, self is never read.

§Examples:
let mut vec1 = Vector2::new(1.0, 2.0);
let vec2 = Vector2::new(0.1, 0.2);
let mat = Matrix2::new(1.0, 2.0,
                       3.0, 4.0);
vec1.gemv(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, Vector2::new(10.0, 21.0));
Source

pub fn sygemv<D2: Dim, D3: Dim, SB, SC>( &mut self, alpha: T, a: &SquareMatrix<T, D2, SB>, x: &Vector<T, D3, SC>, beta: T, )
where T: One, SB: Storage<T, D2, D2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, U1>,

Computes self = alpha * a * x + beta * self, where a is a symmetric matrix, x a vector, and alpha, beta two scalars.

For hermitian matrices, use .hegemv instead. If beta is zero, self is never read. If self is read, only its lower-triangular part (including the diagonal) is actually read.

§Examples:
let mat = Matrix2::new(1.0, 2.0,
                       2.0, 4.0);
let mut vec1 = Vector2::new(1.0, 2.0);
let vec2 = Vector2::new(0.1, 0.2);
vec1.sygemv(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, Vector2::new(10.0, 20.0));


// The matrix upper-triangular elements can be garbage because it is never
// read by this method. Therefore, it is not necessary for the caller to
// fill the matrix struct upper-triangle.
let mat = Matrix2::new(1.0, 9999999.9999999,
                       2.0, 4.0);
let mut vec1 = Vector2::new(1.0, 2.0);
vec1.sygemv(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, Vector2::new(10.0, 20.0));
Source

pub fn hegemv<D2: Dim, D3: Dim, SB, SC>( &mut self, alpha: T, a: &SquareMatrix<T, D2, SB>, x: &Vector<T, D3, SC>, beta: T, )
where T: SimdComplexField, SB: Storage<T, D2, D2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<D, D2> + AreMultipliable<D2, D2, D3, U1>,

Computes self = alpha * a * x + beta * self, where a is an hermitian matrix, x a vector, and alpha, beta two scalars.

If beta is zero, self is never read. If self is read, only its lower-triangular part (including the diagonal) is actually read.

§Examples:
let mat = Matrix2::new(Complex::new(1.0, 0.0), Complex::new(2.0, -0.1),
                       Complex::new(2.0, 1.0), Complex::new(4.0, 0.0));
let mut vec1 = Vector2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0));
let vec2 = Vector2::new(Complex::new(0.1, 0.2), Complex::new(0.3, 0.4));
vec1.sygemv(Complex::new(10.0, 20.0), &mat, &vec2, Complex::new(5.0, 15.0));
assert_eq!(vec1, Vector2::new(Complex::new(-48.0, 44.0), Complex::new(-75.0, 110.0)));


// The matrix upper-triangular elements can be garbage because it is never
// read by this method. Therefore, it is not necessary for the caller to
// fill the matrix struct upper-triangle.

let mat = Matrix2::new(Complex::new(1.0, 0.0), Complex::new(99999999.9, 999999999.9),
                       Complex::new(2.0, 1.0), Complex::new(4.0, 0.0));
let mut vec1 = Vector2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0));
let vec2 = Vector2::new(Complex::new(0.1, 0.2), Complex::new(0.3, 0.4));
vec1.sygemv(Complex::new(10.0, 20.0), &mat, &vec2, Complex::new(5.0, 15.0));
assert_eq!(vec1, Vector2::new(Complex::new(-48.0, 44.0), Complex::new(-75.0, 110.0)));
Source

pub fn gemv_tr<R2: Dim, C2: Dim, D3: Dim, SB, SC>( &mut self, alpha: T, a: &Matrix<T, R2, C2, SB>, x: &Vector<T, D3, SC>, beta: T, )
where T: One, SB: Storage<T, R2, C2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<D, C2> + AreMultipliable<C2, R2, D3, U1>,

Computes self = alpha * a.transpose() * x + beta * self, where a is a matrix, x a vector, and alpha, beta two scalars.

If beta is zero, self is never read.

§Examples:
let mat = Matrix2::new(1.0, 3.0,
                       2.0, 4.0);
let mut vec1 = Vector2::new(1.0, 2.0);
let vec2 = Vector2::new(0.1, 0.2);
let expected = mat.transpose() * vec2 * 10.0 + vec1 * 5.0;

vec1.gemv_tr(10.0, &mat, &vec2, 5.0);
assert_eq!(vec1, expected);
Source

pub fn gemv_ad<R2: Dim, C2: Dim, D3: Dim, SB, SC>( &mut self, alpha: T, a: &Matrix<T, R2, C2, SB>, x: &Vector<T, D3, SC>, beta: T, )
where T: SimdComplexField, SB: Storage<T, R2, C2>, SC: Storage<T, D3>, ShapeConstraint: DimEq<D, C2> + AreMultipliable<C2, R2, D3, U1>,

Computes self = alpha * a.adjoint() * x + beta * self, where a is a matrix, x a vector, and alpha, beta two scalars.

For real matrices, this is the same as .gemv_tr. If beta is zero, self is never read.

§Examples:
let mat = Matrix2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0),
                       Complex::new(5.0, 6.0), Complex::new(7.0, 8.0));
let mut vec1 = Vector2::new(Complex::new(1.0, 2.0), Complex::new(3.0, 4.0));
let vec2 = Vector2::new(Complex::new(0.1, 0.2), Complex::new(0.3, 0.4));
let expected = mat.adjoint() * vec2 * Complex::new(10.0, 20.0) + vec1 * Complex::new(5.0, 15.0);

vec1.gemv_ad(Complex::new(10.0, 20.0), &mat, &vec2, Complex::new(5.0, 15.0));
assert_eq!(vec1, expected);
Source§

impl<T, D: Dim, S: RawStorage<T, D>> Vector<T, D, S>

Source

pub unsafe fn vget_unchecked(&self, i: usize) -> &T

Gets a reference to the i-th element of this column vector without bound checking.

Source§

impl<T, D: Dim, S: RawStorageMut<T, D>> Vector<T, D, S>

Source

pub unsafe fn vget_unchecked_mut(&mut self, i: usize) -> &mut T

Gets a mutable reference to the i-th element of this column vector without bound checking.

Source§

impl<T: Scalar + Zero, D: DimAdd<U1>, S: RawStorage<T, D>> Vector<T, D, S>

Source

pub fn to_homogeneous(&self) -> OVector<T, DimSum<D, U1>>

Computes the coordinates in projective space of this vector, i.e., appends a 0 to its coordinates.

Source

pub fn from_homogeneous<SB>( v: Vector<T, DimSum<D, U1>, SB>, ) -> Option<OVector<T, D>>
where SB: RawStorage<T, DimSum<D, U1>>, DefaultAllocator: Allocator<T, D>,

Constructs a vector from coordinates in projective space, i.e., removes a 0 at the end of self. Returns None if this last component is not zero.

Source§

impl<T: Scalar, D: DimAdd<U1>, S: RawStorage<T, D>> Vector<T, D, S>

Source

pub fn push(&self, element: T) -> OVector<T, DimSum<D, U1>>

Constructs a new vector of higher dimension by appending element to the end of self.

Source§

impl<T: Scalar + Field, S: RawStorage<T, U3>> Vector<T, U3, S>

Source

pub fn cross_matrix(&self) -> OMatrix<T, U3, U3>

Computes the matrix M such that for all vector v we have M * v == self.cross(&v).

Source§

impl<T: Scalar, D, S: RawStorage<T, D>> Vector<T, D, S>
where D: DimName + ToTypenum,

§Swizzling

Source

pub fn xx(&self) -> Vector2<T>
where D::Typenum: Cmp<U0, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xxx(&self) -> Vector3<T>
where D::Typenum: Cmp<U0, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xy(&self) -> Vector2<T>
where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yx(&self) -> Vector2<T>
where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yy(&self) -> Vector2<T>
where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xxy(&self) -> Vector3<T>
where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xyx(&self) -> Vector3<T>
where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xyy(&self) -> Vector3<T>
where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yxx(&self) -> Vector3<T>
where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yxy(&self) -> Vector3<T>
where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yyx(&self) -> Vector3<T>
where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yyy(&self) -> Vector3<T>
where D::Typenum: Cmp<U1, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xz(&self) -> Vector2<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yz(&self) -> Vector2<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zx(&self) -> Vector2<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zy(&self) -> Vector2<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zz(&self) -> Vector2<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xxz(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xyz(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xzx(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xzy(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn xzz(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yxz(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yyz(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yzx(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yzy(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn yzz(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zxx(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zxy(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zxz(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zyx(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zyy(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zyz(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zzx(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zzy(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source

pub fn zzz(&self) -> Vector3<T>
where D::Typenum: Cmp<U2, Output = Greater>,

Builds a new vector from components of self.

Source§

impl<T: Scalar + Zero + One + ClosedAdd + ClosedSub + ClosedMul, D: Dim, S: Storage<T, D>> Vector<T, D, S>

§Interpolation

Source

pub fn lerp<S2: Storage<T, D>>( &self, rhs: &Vector<T, D, S2>, t: T, ) -> OVector<T, D>

Returns self * (1.0 - t) + rhs * t, i.e., the linear blend of the vectors x and y using the scalar value a.

The value for a is not restricted to the range [0, 1].

§Examples:
let x = Vector3::new(1.0, 2.0, 3.0);
let y = Vector3::new(10.0, 20.0, 30.0);
assert_eq!(x.lerp(&y, 0.1), Vector3::new(1.9, 3.8, 5.7));
Source

pub fn slerp<S2: Storage<T, D>>( &self, rhs: &Vector<T, D, S2>, t: T, ) -> OVector<T, D>

Computes the spherical linear interpolation between two non-zero vectors.

The result is a unit vector.

§Examples:

let v1 =Vector2::new(1.0, 2.0);
let v2 = Vector2::new(2.0, -3.0);

let v = v1.slerp(&v2, 1.0);

assert_eq!(v, v2.normalize());
Source§

impl<T: Scalar, D: Dim, S: RawStorage<T, D>> Vector<T, D, S>

§Find the min and max components (vector-specific methods)

Source

pub fn icamax(&self) -> usize
where T: ComplexField,

Computes the index of the vector component with the largest complex or real absolute value.

§Examples:
let vec = Vector3::new(Complex::new(11.0, 3.0), Complex::new(-15.0, 0.0), Complex::new(13.0, 5.0));
assert_eq!(vec.icamax(), 2);
Source

pub fn argmax(&self) -> (usize, T)
where T: PartialOrd,

Computes the index and value of the vector component with the largest value.

§Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.argmax(), (2, 13));
Source

pub fn imax(&self) -> usize
where T: PartialOrd,

Computes the index of the vector component with the largest value.

§Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.imax(), 2);
Source

pub fn iamax(&self) -> usize
where T: PartialOrd + Signed,

Computes the index of the vector component with the largest absolute value.

§Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.iamax(), 1);
Source

pub fn argmin(&self) -> (usize, T)
where T: PartialOrd,

Computes the index and value of the vector component with the smallest value.

§Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.argmin(), (1, -15));
Source

pub fn imin(&self) -> usize
where T: PartialOrd,

Computes the index of the vector component with the smallest value.

§Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.imin(), 1);
Source

pub fn iamin(&self) -> usize
where T: PartialOrd + Signed,

Computes the index of the vector component with the smallest absolute value.

§Examples:
let vec = Vector3::new(11, -15, 13);
assert_eq!(vec.iamin(), 0);
Source§

impl<T: RealField, D1: Dim, S1: Storage<T, D1>> Vector<T, D1, S1>

Source

pub fn convolve_full<D2, S2>( &self, kernel: Vector<T, D2, S2>, ) -> OVector<T, DimDiff<DimSum<D1, D2>, U1>>
where D1: DimAdd<D2>, D2: DimAdd<D1, Output = DimSum<D1, D2>>, DimSum<D1, D2>: DimSub<U1>, S2: Storage<T, D2>, DefaultAllocator: Allocator<T, DimDiff<DimSum<D1, D2>, U1>>,

Returns the convolution of the target vector and a kernel.

§Arguments
  • kernel - A Vector with size > 0
§Errors

Inputs must satisfy vector.len() >= kernel.len() > 0.

Source

pub fn convolve_valid<D2, S2>( &self, kernel: Vector<T, D2, S2>, ) -> OVector<T, DimDiff<DimSum<D1, U1>, D2>>
where D1: DimAdd<U1>, D2: Dim, DimSum<D1, U1>: DimSub<D2>, S2: Storage<T, D2>, DefaultAllocator: Allocator<T, DimDiff<DimSum<D1, U1>, D2>>,

Returns the convolution of the target vector and a kernel.

The output convolution consists only of those elements that do not rely on the zero-padding.

§Arguments
  • kernel - A Vector with size > 0
§Errors

Inputs must satisfy self.len() >= kernel.len() > 0.

Source

pub fn convolve_same<D2, S2>(&self, kernel: Vector<T, D2, S2>) -> OVector<T, D1>
where D2: Dim, S2: Storage<T, D2>, DefaultAllocator: Allocator<T, D1>,

Returns the convolution of the target vector and a kernel.

The output convolution is the same size as vector, centered with respect to the ‘full’ output.

§Arguments
  • kernel - A Vector with size > 0
§Errors

Inputs must satisfy self.len() >= kernel.len() > 0.