Struct nalgebra::linalg::SVD

source ·
pub struct SVD<T: ComplexField, R: DimMin<C>, C: Dim>
where DefaultAllocator: Allocator<T, DimMinimum<R, C>, C> + Allocator<T, R, DimMinimum<R, C>> + Allocator<T::RealField, DimMinimum<R, C>>,
{ pub u: Option<OMatrix<T, R, DimMinimum<R, C>>>, pub v_t: Option<OMatrix<T, DimMinimum<R, C>, C>>, pub singular_values: OVector<T::RealField, DimMinimum<R, C>>, }
Expand description

Singular Value Decomposition of a general matrix.

Fields§

§u: Option<OMatrix<T, R, DimMinimum<R, C>>>

The left-singular vectors U of this SVD.

§v_t: Option<OMatrix<T, DimMinimum<R, C>, C>>

The right-singular vectors V^t of this SVD.

§singular_values: OVector<T::RealField, DimMinimum<R, C>>

The singular values of this SVD.

Implementations§

source§

impl<T: ComplexField, R: DimMin<C>, C: Dim> SVD<T, R, C>
where DimMinimum<R, C>: DimSub<U1>, DefaultAllocator: Allocator<T, R, C> + Allocator<T, C> + Allocator<T, R> + Allocator<T, DimDiff<DimMinimum<R, C>, U1>> + Allocator<T, DimMinimum<R, C>, C> + Allocator<T, R, DimMinimum<R, C>> + Allocator<T, DimMinimum<R, C>> + Allocator<T::RealField, DimMinimum<R, C>> + Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>>,

source

pub fn new_unordered( matrix: OMatrix<T, R, C>, compute_u: bool, compute_v: bool, ) -> Self

Computes the Singular Value Decomposition of matrix using implicit shift. The singular values are not guaranteed to be sorted in any particular order. If a descending order is required, consider using new instead.

source

pub fn try_new_unordered( matrix: OMatrix<T, R, C>, compute_u: bool, compute_v: bool, eps: T::RealField, max_niter: usize, ) -> Option<Self>

Attempts to compute the Singular Value Decomposition of matrix using implicit shift. The singular values are not guaranteed to be sorted in any particular order. If a descending order is required, consider using try_new instead.

§Arguments
  • compute_u − set this to true to enable the computation of left-singular vectors.
  • compute_v − set this to true to enable the computation of right-singular vectors.
  • eps − tolerance used to determine when a value converged to 0.
  • max_niter − maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded, None is returned. If niter == 0, then the algorithm continues indefinitely until convergence.
source

pub fn rank(&self, eps: T::RealField) -> usize

Computes the rank of the decomposed matrix, i.e., the number of singular values greater than eps.

source

pub fn recompose(self) -> Result<OMatrix<T, R, C>, &'static str>

Rebuild the original matrix.

This is useful if some of the singular values have been manually modified. Returns Err if the right- and left- singular vectors have not been computed at construction-time.

source

pub fn pseudo_inverse( self, eps: T::RealField, ) -> Result<OMatrix<T, C, R>, &'static str>
where DefaultAllocator: Allocator<T, C, R>,

Computes the pseudo-inverse of the decomposed matrix.

Any singular value smaller than eps is assumed to be zero. Returns Err if the right- and left- singular vectors have not been computed at construction-time.

source

pub fn solve<R2: Dim, C2: Dim, S2>( &self, b: &Matrix<T, R2, C2, S2>, eps: T::RealField, ) -> Result<OMatrix<T, C, C2>, &'static str>
where S2: Storage<T, R2, C2>, DefaultAllocator: Allocator<T, C, C2> + Allocator<T, DimMinimum<R, C>, C2>, ShapeConstraint: SameNumberOfRows<R, R2>,

Solves the system self * x = b where self is the decomposed matrix and x the unknown.

Any singular value smaller than eps is assumed to be zero. Returns Err if the singular vectors U and V have not been computed.

source

pub fn to_polar(&self) -> Option<(OMatrix<T, R, R>, OMatrix<T, R, C>)>
where DefaultAllocator: Allocator<T, R, C> + Allocator<T, DimMinimum<R, C>, R> + Allocator<T, DimMinimum<R, C>> + Allocator<T, R, R> + Allocator<T, DimMinimum<R, C>, DimMinimum<R, C>>,

converts SVD results to Polar decomposition form of the original Matrix: A = P' * U.

The polar decomposition used here is Left Polar Decomposition (or Reverse Polar Decomposition) Returns None if the singular vectors of the SVD haven’t been calculated

source§

impl<T: ComplexField, R: DimMin<C>, C: Dim> SVD<T, R, C>
where DimMinimum<R, C>: DimSub<U1>, DefaultAllocator: Allocator<T, R, C> + Allocator<T, C> + Allocator<T, R> + Allocator<T, DimDiff<DimMinimum<R, C>, U1>> + Allocator<T, DimMinimum<R, C>, C> + Allocator<T, R, DimMinimum<R, C>> + Allocator<T, DimMinimum<R, C>> + Allocator<T::RealField, DimMinimum<R, C>> + Allocator<T::RealField, DimDiff<DimMinimum<R, C>, U1>> + Allocator<(usize, usize), DimMinimum<R, C>> + Allocator<(T::RealField, usize), DimMinimum<R, C>>,

source

pub fn new(matrix: OMatrix<T, R, C>, compute_u: bool, compute_v: bool) -> Self

Computes the Singular Value Decomposition of matrix using implicit shift. The singular values are guaranteed to be sorted in descending order. If this order is not required consider using new_unordered.

source

pub fn try_new( matrix: OMatrix<T, R, C>, compute_u: bool, compute_v: bool, eps: T::RealField, max_niter: usize, ) -> Option<Self>

Attempts to compute the Singular Value Decomposition of matrix using implicit shift. The singular values are guaranteed to be sorted in descending order. If this order is not required consider using try_new_unordered.

§Arguments
  • compute_u − set this to true to enable the computation of left-singular vectors.
  • compute_v − set this to true to enable the computation of right-singular vectors.
  • eps − tolerance used to determine when a value converged to 0.
  • max_niter − maximum total number of iterations performed by the algorithm. If this number of iteration is exceeded, None is returned. If niter == 0, then the algorithm continues indefinitely until convergence.
source

pub fn sort_by_singular_values(&mut self)

Sort the estimated components of the SVD by its singular values in descending order. Such an ordering is often implicitly required when the decompositions are used for estimation or fitting purposes. Using this function is only required if new_unordered or try_new_unorderd were used and the specific sorting is required afterward.

Trait Implementations§

source§

impl<T: Clone + ComplexField, R: Clone + DimMin<C>, C: Clone + Dim> Clone for SVD<T, R, C>

source§

fn clone(&self) -> SVD<T, R, C>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<T: Debug + ComplexField, R: Debug + DimMin<C>, C: Debug + Dim> Debug for SVD<T, R, C>

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<'de, T: ComplexField, R: DimMin<C>, C: Dim> Deserialize<'de> for SVD<T, R, C>
where DefaultAllocator: Allocator<T, DimMinimum<R, C>, C> + Allocator<T, R, DimMinimum<R, C>> + Allocator<T::RealField, DimMinimum<R, C>>, OMatrix<T, R, DimMinimum<R, C>>: Deserialize<'de>, OMatrix<T, DimMinimum<R, C>, C>: Deserialize<'de>, OVector<T::RealField, DimMinimum<R, C>>: Deserialize<'de>,

source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl<T: ComplexField, R: DimMin<C>, C: Dim> Serialize for SVD<T, R, C>

source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
source§

impl<T: ComplexField, R: DimMin<C>, C: Dim> Copy for SVD<T, R, C>
where DefaultAllocator: Allocator<T, DimMinimum<R, C>, C> + Allocator<T, R, DimMinimum<R, C>> + Allocator<T::RealField, DimMinimum<R, C>>, OMatrix<T, R, DimMinimum<R, C>>: Copy, OMatrix<T, DimMinimum<R, C>, C>: Copy, OVector<T::RealField, DimMinimum<R, C>>: Copy,

Auto Trait Implementations§

§

impl<T, R, C> !Freeze for SVD<T, R, C>

§

impl<T, R, C> !RefUnwindSafe for SVD<T, R, C>

§

impl<T, R, C> !Send for SVD<T, R, C>

§

impl<T, R, C> !Sync for SVD<T, R, C>

§

impl<T, R, C> !Unpin for SVD<T, R, C>

§

impl<T, R, C> !UnwindSafe for SVD<T, R, C>

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Same for T

source§

type Output = T

Should always be Self
source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
source§

impl<T> ToOwned for T
where T: Clone,

source§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

source§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,