Type Alias nalgebra::geometry::UnitDualQuaternion

source ·
pub type UnitDualQuaternion<T> = Unit<DualQuaternion<T>>;
Expand description

A unit dual quaternion. May be used to represent a rotation followed by a translation.

Aliased Type§

struct UnitDualQuaternion<T> { /* private fields */ }

Implementations§

source§

impl<T: SimdRealField> UnitDualQuaternion<T>

source

pub fn dual_quaternion(&self) -> &DualQuaternion<T>

The underlying dual quaternion.

Same as self.as_ref().

§Example
let id = UnitDualQuaternion::identity();
assert_eq!(*id.dual_quaternion(), DualQuaternion::from_real_and_dual(
    Quaternion::new(1.0, 0.0, 0.0, 0.0),
    Quaternion::new(0.0, 0.0, 0.0, 0.0)
));
source

pub fn conjugate(&self) -> Self

Compute the conjugate of this unit quaternion.

§Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let unit = UnitDualQuaternion::new_normalize(
    DualQuaternion::from_real_and_dual(qr, qd)
);
let conj = unit.conjugate();
assert_eq!(conj.real, unit.real.conjugate());
assert_eq!(conj.dual, unit.dual.conjugate());
source

pub fn conjugate_mut(&mut self)

Compute the conjugate of this unit quaternion in-place.

§Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let unit = UnitDualQuaternion::new_normalize(
    DualQuaternion::from_real_and_dual(qr, qd)
);
let mut conj = unit.clone();
conj.conjugate_mut();
assert_eq!(conj.as_ref().real, unit.as_ref().real.conjugate());
assert_eq!(conj.as_ref().dual, unit.as_ref().dual.conjugate());
source

pub fn inverse(&self) -> Self

Inverts this dual quaternion if it is not zero.

§Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let unit = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd));
let inv = unit.inverse();
assert_relative_eq!(unit * inv, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
assert_relative_eq!(inv * unit, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
source

pub fn inverse_mut(&mut self)

Inverts this dual quaternion in place if it is not zero.

§Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let unit = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd));
let mut inv = unit.clone();
inv.inverse_mut();
assert_relative_eq!(unit * inv, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
assert_relative_eq!(inv * unit, UnitDualQuaternion::identity(), epsilon = 1.0e-6);
source

pub fn isometry_to(&self, other: &Self) -> Self

The unit dual quaternion needed to make self and other coincide.

The result is such that: self.isometry_to(other) * self == other.

§Example
let qr = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let qd = Quaternion::new(5.0, 6.0, 7.0, 8.0);
let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qr, qd));
let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(qd, qr));
let dq_to = dq1.isometry_to(&dq2);
assert_relative_eq!(dq_to * dq1, dq2, epsilon = 1.0e-6);
source

pub fn lerp(&self, other: &Self, t: T) -> DualQuaternion<T>

Linear interpolation between two unit dual quaternions.

The result is not normalized.

§Example
let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
    Quaternion::new(0.5, 0.0, 0.5, 0.0),
    Quaternion::new(0.0, 0.5, 0.0, 0.5)
));
let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
    Quaternion::new(0.5, 0.0, 0.0, 0.5),
    Quaternion::new(0.5, 0.0, 0.5, 0.0)
));
assert_relative_eq!(
    UnitDualQuaternion::new_normalize(dq1.lerp(&dq2, 0.5)),
    UnitDualQuaternion::new_normalize(
        DualQuaternion::from_real_and_dual(
            Quaternion::new(0.5, 0.0, 0.25, 0.25),
            Quaternion::new(0.25, 0.25, 0.25, 0.25)
        )
    ),
    epsilon = 1.0e-6
);
source

pub fn nlerp(&self, other: &Self, t: T) -> Self

Normalized linear interpolation between two unit quaternions.

This is the same as self.lerp except that the result is normalized.

§Example
let dq1 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
    Quaternion::new(0.5, 0.0, 0.5, 0.0),
    Quaternion::new(0.0, 0.5, 0.0, 0.5)
));
let dq2 = UnitDualQuaternion::new_normalize(DualQuaternion::from_real_and_dual(
    Quaternion::new(0.5, 0.0, 0.0, 0.5),
    Quaternion::new(0.5, 0.0, 0.5, 0.0)
));
assert_relative_eq!(dq1.nlerp(&dq2, 0.2), UnitDualQuaternion::new_normalize(
    DualQuaternion::from_real_and_dual(
        Quaternion::new(0.5, 0.0, 0.4, 0.1),
        Quaternion::new(0.1, 0.4, 0.1, 0.4)
    )
), epsilon = 1.0e-6);
source

pub fn sclerp(&self, other: &Self, t: T) -> Self
where T: RealField,

Screw linear interpolation between two unit quaternions. This creates a smooth arc from one dual-quaternion to another.

Panics if the angle between both quaternion is 180 degrees (in which case the interpolation is not well-defined). Use .try_sclerp instead to avoid the panic.

§Example

let dq1 = UnitDualQuaternion::from_parts(
    Vector3::new(0.0, 3.0, 0.0).into(),
    UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0),
);

let dq2 = UnitDualQuaternion::from_parts(
    Vector3::new(0.0, 0.0, 3.0).into(),
    UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0),
);

let dq = dq1.sclerp(&dq2, 1.0 / 3.0);

assert_relative_eq!(
    dq.rotation().euler_angles().0, std::f32::consts::FRAC_PI_2, epsilon = 1.0e-6
);
assert_relative_eq!(dq.translation().vector.y, 3.0, epsilon = 1.0e-6);
source

pub fn try_sclerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self>
where T: RealField,

Computes the screw-linear interpolation between two unit quaternions or returns None if both quaternions are approximately 180 degrees apart (in which case the interpolation is not well-defined).

§Arguments
  • self: the first quaternion to interpolate from.
  • other: the second quaternion to interpolate toward.
  • t: the interpolation parameter. Should be between 0 and 1.
  • epsilon: the value below which the sinus of the angle separating both quaternion must be to return None.
source

pub fn rotation(&self) -> UnitQuaternion<T>

Return the rotation part of this unit dual quaternion.

let dq = UnitDualQuaternion::from_parts(
    Vector3::new(0.0, 3.0, 0.0).into(),
    UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0)
);

assert_relative_eq!(
    dq.rotation().angle(), std::f32::consts::FRAC_PI_4, epsilon = 1.0e-6
);
source

pub fn translation(&self) -> Translation3<T>

Return the translation part of this unit dual quaternion.

let dq = UnitDualQuaternion::from_parts(
    Vector3::new(0.0, 3.0, 0.0).into(),
    UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0)
);

assert_relative_eq!(
    dq.translation().vector, Vector3::new(0.0, 3.0, 0.0), epsilon = 1.0e-6
);
source

pub fn to_isometry(self) -> Isometry3<T>

Builds an isometry from this unit dual quaternion.

let rotation = UnitQuaternion::from_euler_angles(std::f32::consts::PI, 0.0, 0.0);
let translation = Vector3::new(1.0, 3.0, 2.5);
let dq = UnitDualQuaternion::from_parts(
    translation.into(),
    rotation
);
let iso = dq.to_isometry();

assert_relative_eq!(iso.rotation.angle(), std::f32::consts::PI, epsilon = 1.0e-6);
assert_relative_eq!(iso.translation.vector, translation, epsilon = 1.0e-6);
source

pub fn transform_point(&self, pt: &Point3<T>) -> Point3<T>

Rotate and translate a point by this unit dual quaternion interpreted as an isometry.

This is the same as the multiplication self * pt.

let dq = UnitDualQuaternion::from_parts(
    Vector3::new(0.0, 3.0, 0.0).into(),
    UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
);
let point = Point3::new(1.0, 2.0, 3.0);

assert_relative_eq!(
    dq.transform_point(&point), Point3::new(1.0, 0.0, 2.0), epsilon = 1.0e-6
);
source

pub fn transform_vector(&self, v: &Vector3<T>) -> Vector3<T>

Rotate a vector by this unit dual quaternion, ignoring the translational component.

This is the same as the multiplication self * v.

let dq = UnitDualQuaternion::from_parts(
    Vector3::new(0.0, 3.0, 0.0).into(),
    UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
);
let vector = Vector3::new(1.0, 2.0, 3.0);

assert_relative_eq!(
    dq.transform_vector(&vector), Vector3::new(1.0, -3.0, 2.0), epsilon = 1.0e-6
);
source

pub fn inverse_transform_point(&self, pt: &Point3<T>) -> Point3<T>

Rotate and translate a point by the inverse of this unit quaternion.

This may be cheaper than inverting the unit dual quaternion and transforming the point.

let dq = UnitDualQuaternion::from_parts(
    Vector3::new(0.0, 3.0, 0.0).into(),
    UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
);
let point = Point3::new(1.0, 2.0, 3.0);

assert_relative_eq!(
    dq.inverse_transform_point(&point), Point3::new(1.0, 3.0, 1.0), epsilon = 1.0e-6
);
source

pub fn inverse_transform_vector(&self, v: &Vector3<T>) -> Vector3<T>

Rotate a vector by the inverse of this unit quaternion, ignoring the translational component.

This may be cheaper than inverting the unit dual quaternion and transforming the vector.

let dq = UnitDualQuaternion::from_parts(
    Vector3::new(0.0, 3.0, 0.0).into(),
    UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
);
let vector = Vector3::new(1.0, 2.0, 3.0);

assert_relative_eq!(
    dq.inverse_transform_vector(&vector), Vector3::new(1.0, 3.0, -2.0), epsilon = 1.0e-6
);
source

pub fn inverse_transform_unit_vector( &self, v: &Unit<Vector3<T>>, ) -> Unit<Vector3<T>>

Rotate a unit vector by the inverse of this unit quaternion, ignoring the translational component. This may be cheaper than inverting the unit dual quaternion and transforming the vector.

let dq = UnitDualQuaternion::from_parts(
    Vector3::new(0.0, 3.0, 0.0).into(),
    UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
);
let vector = Unit::new_unchecked(Vector3::new(0.0, 1.0, 0.0));

assert_relative_eq!(
    dq.inverse_transform_unit_vector(&vector),
    Unit::new_unchecked(Vector3::new(0.0, 0.0, -1.0)),
    epsilon = 1.0e-6
);
source§

impl<T: SimdRealField + RealField> UnitDualQuaternion<T>

source

pub fn to_homogeneous(self) -> Matrix4<T>

Converts this unit dual quaternion interpreted as an isometry into its equivalent homogeneous transformation matrix.

let dq = UnitDualQuaternion::from_parts(
    Vector3::new(1.0, 3.0, 2.0).into(),
    UnitQuaternion::from_axis_angle(&Vector3::z_axis(), std::f32::consts::FRAC_PI_6)
);
let expected = Matrix4::new(0.8660254, -0.5,      0.0, 1.0,
                            0.5,       0.8660254, 0.0, 3.0,
                            0.0,       0.0,       1.0, 2.0,
                            0.0,       0.0,       0.0, 1.0);

assert_relative_eq!(dq.to_homogeneous(), expected, epsilon = 1.0e-6);
source§

impl<T: SimdRealField> UnitDualQuaternion<T>

source

pub fn identity() -> Self

The unit dual quaternion multiplicative identity, which also represents the identity transformation as an isometry.

let ident = UnitDualQuaternion::identity();
let point = Point3::new(1.0, -4.3, 3.33);

assert_eq!(ident * point, point);
assert_eq!(ident, ident.inverse());
source

pub fn cast<To: Scalar>(self) -> UnitDualQuaternion<To>
where UnitDualQuaternion<To>: SupersetOf<Self>,

Cast the components of self to another type.

§Example
let q = UnitDualQuaternion::<f64>::identity();
let q2 = q.cast::<f32>();
assert_eq!(q2, UnitDualQuaternion::<f32>::identity());
source§

impl<T: SimdRealField> UnitDualQuaternion<T>

source

pub fn from_parts( translation: Translation3<T>, rotation: UnitQuaternion<T>, ) -> Self

Return a dual quaternion representing the translation and orientation given by the provided rotation quaternion and translation vector.

let dq = UnitDualQuaternion::from_parts(
    Vector3::new(0.0, 3.0, 0.0).into(),
    UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
);
let point = Point3::new(1.0, 2.0, 3.0);

assert_relative_eq!(dq * point, Point3::new(1.0, 0.0, 2.0), epsilon = 1.0e-6);
source

pub fn from_isometry(isometry: &Isometry3<T>) -> Self

Return a unit dual quaternion representing the translation and orientation given by the provided isometry.

let iso = Isometry3::from_parts(
    Vector3::new(0.0, 3.0, 0.0).into(),
    UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_2, 0.0, 0.0)
);
let dq = UnitDualQuaternion::from_isometry(&iso);
let point = Point3::new(1.0, 2.0, 3.0);

assert_relative_eq!(dq * point, iso * point, epsilon = 1.0e-6);
source

pub fn from_rotation(rotation: UnitQuaternion<T>) -> Self

Creates a dual quaternion from a unit quaternion rotation.

§Example
let q = Quaternion::new(1.0, 2.0, 3.0, 4.0);
let rot = UnitQuaternion::new_normalize(q);

let dq = UnitDualQuaternion::from_rotation(rot);
assert_relative_eq!(dq.as_ref().real.norm(), 1.0, epsilon = 1.0e-6);
assert_eq!(dq.as_ref().dual.norm(), 0.0);

Trait Implementations§

source§

impl<T: RealField + AbsDiffEq<Epsilon = T>> AbsDiffEq for UnitDualQuaternion<T>

source§

type Epsilon = T

Used for specifying relative comparisons.
source§

fn default_epsilon() -> Self::Epsilon

The default tolerance to use when testing values that are close together. Read more
source§

fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool

A test for equality that uses the absolute difference to compute the approximate equality of two numbers.
source§

fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

The inverse of AbsDiffEq::abs_diff_eq.
source§

impl<T: RealField> Default for UnitDualQuaternion<T>

source§

fn default() -> Self

Returns the “default value” for a type. Read more
source§

impl<T: RealField + Display> Display for UnitDualQuaternion<T>

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<'a, 'b, T: SimdRealField> Div<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Isometry3<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField> Div<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Isometry3<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Div<&'b Translation<T, 3>> for &'a UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Translation3<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField> Div<&'b Translation<T, 3>> for UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b Translation3<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for &'a UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b UnitDualQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField> Div<&'b Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b UnitDualQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for &'a UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b UnitQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: &'b UnitQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField> Div<Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Isometry3<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField> Div<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Isometry3<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField> Div<Translation<T, 3>> for &'a UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Translation3<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField> Div<Translation<T, 3>> for UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: Translation3<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField> Div<Unit<DualQuaternion<T>>> for &'a UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: UnitDualQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'a, T: SimdRealField> Div<Unit<Quaternion<T>>> for &'a UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: UnitQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField> Div<Unit<Quaternion<T>>> for UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: UnitQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<T: SimdRealField> Div for UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the / operator.
source§

fn div(self, rhs: UnitDualQuaternion<T>) -> Self::Output

Performs the / operation. Read more
source§

impl<'b, T: SimdRealField> DivAssign<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>

source§

fn div_assign(&mut self, rhs: &'b Isometry3<T>)

Performs the /= operation. Read more
source§

impl<'b, T: SimdRealField> DivAssign<&'b Translation<T, 3>> for UnitDualQuaternion<T>

source§

fn div_assign(&mut self, rhs: &'b Translation3<T>)

Performs the /= operation. Read more
source§

impl<'b, T: SimdRealField> DivAssign<&'b Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>

source§

fn div_assign(&mut self, rhs: &'b UnitDualQuaternion<T>)

Performs the /= operation. Read more
source§

impl<'b, T: SimdRealField> DivAssign<&'b Unit<Quaternion<T>>> for UnitDualQuaternion<T>

source§

fn div_assign(&mut self, rhs: &'b UnitQuaternion<T>)

Performs the /= operation. Read more
source§

impl<T: SimdRealField> DivAssign<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>

source§

fn div_assign(&mut self, rhs: Isometry3<T>)

Performs the /= operation. Read more
source§

impl<T: SimdRealField> DivAssign<Translation<T, 3>> for UnitDualQuaternion<T>

source§

fn div_assign(&mut self, rhs: Translation3<T>)

Performs the /= operation. Read more
source§

impl<T: SimdRealField> DivAssign<Unit<Quaternion<T>>> for UnitDualQuaternion<T>

source§

fn div_assign(&mut self, rhs: UnitQuaternion<T>)

Performs the /= operation. Read more
source§

impl<T: SimdRealField> DivAssign for UnitDualQuaternion<T>

source§

fn div_assign(&mut self, rhs: UnitDualQuaternion<T>)

Performs the /= operation. Read more
source§

impl<T: SimdRealField> From<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>

source§

fn from(iso: Isometry3<T>) -> Self

Converts to this type from the input type.
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b DualQuaternion<T>> for &'a UnitDualQuaternion<T>

source§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b DualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b DualQuaternion<T>> for UnitDualQuaternion<T>

source§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b DualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Isometry3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Isometry3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField, SB: Storage<T, U3>> Mul<&'b Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>> for &'a UnitDualQuaternion<T>

source§

type Output = Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, ArrayStorage<T, 3, 1>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Vector<T, U3, SB>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, SB: Storage<T, U3>> Mul<&'b Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>> for UnitDualQuaternion<T>

source§

type Output = Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, ArrayStorage<T, 3, 1>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Vector<T, U3, SB>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b OPoint<T, Const<3>>> for &'a UnitDualQuaternion<T>

source§

type Output = OPoint<T, Const<3>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Point3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b OPoint<T, Const<3>>> for UnitDualQuaternion<T>

source§

type Output = OPoint<T, Const<3>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Point3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b Translation<T, 3>> for &'a UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Translation3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b Translation<T, 3>> for UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Translation3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for &'a UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b UnitDualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b UnitDualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField, SB: Storage<T, U3>> Mul<&'b Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for &'a UnitDualQuaternion<T>

source§

type Output = Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, ArrayStorage<T, 3, 1>>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Unit<Vector<T, U3, SB>>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField, SB: Storage<T, U3>> Mul<&'b Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for UnitDualQuaternion<T>

source§

type Output = Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, ArrayStorage<T, 3, 1>>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b Unit<Vector<T, U3, SB>>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for &'a UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b UnitQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: &'b UnitQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<DualQuaternion<T>> for &'a UnitDualQuaternion<T>

source§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: DualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<DualQuaternion<T>> for UnitDualQuaternion<T>

source§

type Output = DualQuaternion<T>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: DualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<Isometry<T, Unit<Quaternion<T>>, 3>> for &'a UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Isometry3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Isometry3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, SB: Storage<T, U3>> Mul<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>> for &'a UnitDualQuaternion<T>

source§

type Output = Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, ArrayStorage<T, 3, 1>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Vector<T, U3, SB>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, SB: Storage<T, U3>> Mul<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>> for UnitDualQuaternion<T>

source§

type Output = Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, ArrayStorage<T, 3, 1>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Vector<T, U3, SB>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<OPoint<T, Const<3>>> for &'a UnitDualQuaternion<T>

source§

type Output = OPoint<T, Const<3>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Point3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<OPoint<T, Const<3>>> for UnitDualQuaternion<T>

source§

type Output = OPoint<T, Const<3>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Point3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<Translation<T, 3>> for &'a UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Translation3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<Translation<T, 3>> for UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Translation3<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<Unit<DualQuaternion<T>>> for &'a UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: UnitDualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField, SB: Storage<T, U3>> Mul<Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for &'a UnitDualQuaternion<T>

source§

type Output = Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, ArrayStorage<T, 3, 1>>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Unit<Vector<T, U3, SB>>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField, SB: Storage<T, U3>> Mul<Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, SB>>> for UnitDualQuaternion<T>

source§

type Output = Unit<Matrix<T, Const<{ typenum::$D::USIZE }>, Const<1>, ArrayStorage<T, 3, 1>>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Unit<Vector<T, U3, SB>>) -> Self::Output

Performs the * operation. Read more
source§

impl<'a, T: SimdRealField> Mul<Unit<Quaternion<T>>> for &'a UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: UnitQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: UnitQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<T: SimdRealField> Mul for UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the * operator.
source§

fn mul(self, rhs: UnitDualQuaternion<T>) -> Self::Output

Performs the * operation. Read more
source§

impl<'b, T: SimdRealField> MulAssign<&'b Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>

source§

fn mul_assign(&mut self, rhs: &'b Isometry3<T>)

Performs the *= operation. Read more
source§

impl<'b, T: SimdRealField> MulAssign<&'b Translation<T, 3>> for UnitDualQuaternion<T>

source§

fn mul_assign(&mut self, rhs: &'b Translation3<T>)

Performs the *= operation. Read more
source§

impl<'b, T: SimdRealField> MulAssign<&'b Unit<DualQuaternion<T>>> for UnitDualQuaternion<T>

source§

fn mul_assign(&mut self, rhs: &'b UnitDualQuaternion<T>)

Performs the *= operation. Read more
source§

impl<'b, T: SimdRealField> MulAssign<&'b Unit<Quaternion<T>>> for UnitDualQuaternion<T>

source§

fn mul_assign(&mut self, rhs: &'b UnitQuaternion<T>)

Performs the *= operation. Read more
source§

impl<T: SimdRealField> MulAssign<Isometry<T, Unit<Quaternion<T>>, 3>> for UnitDualQuaternion<T>

source§

fn mul_assign(&mut self, rhs: Isometry3<T>)

Performs the *= operation. Read more
source§

impl<T: SimdRealField> MulAssign<Translation<T, 3>> for UnitDualQuaternion<T>

source§

fn mul_assign(&mut self, rhs: Translation3<T>)

Performs the *= operation. Read more
source§

impl<T: SimdRealField> MulAssign<Unit<Quaternion<T>>> for UnitDualQuaternion<T>

source§

fn mul_assign(&mut self, rhs: UnitQuaternion<T>)

Performs the *= operation. Read more
source§

impl<T: SimdRealField> MulAssign for UnitDualQuaternion<T>

source§

fn mul_assign(&mut self, rhs: UnitDualQuaternion<T>)

Performs the *= operation. Read more
source§

impl<'a, T: SimdRealField> Neg for &'a UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the - operator.
source§

fn neg(self) -> Self::Output

Performs the unary - operation. Read more
source§

impl<T: SimdRealField> Neg for UnitDualQuaternion<T>

source§

type Output = Unit<DualQuaternion<T>>

The resulting type after applying the - operator.
source§

fn neg(self) -> Self::Output

Performs the unary - operation. Read more
source§

impl<T: SimdRealField> One for UnitDualQuaternion<T>

source§

fn one() -> Self

Returns the multiplicative identity element of Self, 1. Read more
source§

fn set_one(&mut self)

Sets self to the multiplicative identity element of Self, 1.
source§

fn is_one(&self) -> bool
where Self: PartialEq,

Returns true if self is equal to the multiplicative identity. Read more
source§

impl<T: Scalar + ClosedNeg + PartialEq + SimdRealField> PartialEq for UnitDualQuaternion<T>

source§

fn eq(&self, rhs: &Self) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<T: RealField + RelativeEq<Epsilon = T>> RelativeEq for UnitDualQuaternion<T>

source§

fn default_max_relative() -> Self::Epsilon

The default relative tolerance for testing values that are far-apart. Read more
source§

fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool

A test for equality that uses a relative comparison if the values are far apart.
source§

fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool

The inverse of RelativeEq::relative_eq.
source§

impl<T1, T2> SubsetOf<Isometry<T2, Unit<Quaternion<T2>>, 3>> for UnitDualQuaternion<T1>
where T1: RealField, T2: RealField + SupersetOf<T1>,

source§

fn to_superset(&self) -> Isometry3<T2>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(iso: &Isometry3<T2>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(iso: &Isometry3<T2>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1: RealField, T2: RealField + SupersetOf<T1>> SubsetOf<Matrix<T2, Const<{ typenum::$D::USIZE }>, Const<{ typenum::$D::USIZE }>, ArrayStorage<T2, 4, 4>>> for UnitDualQuaternion<T1>

source§

fn to_superset(&self) -> Matrix4<T2>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(m: &Matrix4<T2>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(m: &Matrix4<T2>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2> SubsetOf<Similarity<T2, Unit<Quaternion<T2>>, 3>> for UnitDualQuaternion<T1>
where T1: RealField, T2: RealField + SupersetOf<T1>,

source§

fn to_superset(&self) -> Similarity3<T2>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(sim: &Similarity3<T2>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(sim: &Similarity3<T2>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2, C> SubsetOf<Transform<T2, C, 3>> for UnitDualQuaternion<T1>

source§

fn to_superset(&self) -> Transform<T2, C, 3>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(t: &Transform<T2, C, 3>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(t: &Transform<T2, C, 3>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T1, T2> SubsetOf<Unit<DualQuaternion<T2>>> for UnitDualQuaternion<T1>
where T1: SimdRealField, T2: SimdRealField + SupersetOf<T1>,

source§

fn to_superset(&self) -> UnitDualQuaternion<T2>

The inclusion map: converts self to the equivalent element of its superset.
source§

fn is_in_subset(dq: &UnitDualQuaternion<T2>) -> bool

Checks if element is actually part of the subset Self (and can be converted to it).
source§

fn from_superset_unchecked(dq: &UnitDualQuaternion<T2>) -> Self

Use with care! Same as self.to_superset but without any property checks. Always succeeds.
source§

fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
source§

impl<T: RealField + UlpsEq<Epsilon = T>> UlpsEq for UnitDualQuaternion<T>

source§

fn default_max_ulps() -> u32

The default ULPs to tolerate when testing values that are far-apart. Read more
source§

fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool

A test for equality that uses units in the last place (ULP) if the values are far apart.
source§

fn ulps_ne(&self, other: &Rhs, epsilon: Self::Epsilon, max_ulps: u32) -> bool

The inverse of UlpsEq::ulps_eq.
source§

impl<T: Scalar + ClosedNeg + Eq + SimdRealField> Eq for UnitDualQuaternion<T>