Struct nalgebra::geometry::Similarity
source · #[repr(C)]pub struct Similarity<T, R, const D: usize> {
pub isometry: Isometry<T, R, D>,
/* private fields */
}
Expand description
A similarity, i.e., an uniform scaling, followed by a rotation, followed by a translation.
Fields§
§isometry: Isometry<T, R, D>
The part of this similarity that does not include the scaling factor.
Implementations§
source§impl<T: Scalar + Zero, R, const D: usize> Similarity<T, R, D>where
R: AbstractRotation<T, D>,
impl<T: Scalar + Zero, R, const D: usize> Similarity<T, R, D>where
R: AbstractRotation<T, D>,
sourcepub fn from_parts(
translation: Translation<T, D>,
rotation: R,
scaling: T,
) -> Self
pub fn from_parts( translation: Translation<T, D>, rotation: R, scaling: T, ) -> Self
Creates a new similarity from its rotational and translational parts.
sourcepub fn from_isometry(isometry: Isometry<T, R, D>, scaling: T) -> Self
pub fn from_isometry(isometry: Isometry<T, R, D>, scaling: T) -> Self
Creates a new similarity from its rotational and translational parts.
sourcepub fn set_scaling(&mut self, scaling: T)
pub fn set_scaling(&mut self, scaling: T)
The scaling factor of this similarity transformation.
source§impl<T: Scalar, R, const D: usize> Similarity<T, R, D>
impl<T: Scalar, R, const D: usize> Similarity<T, R, D>
source§impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>
sourcepub fn from_scaling(scaling: T) -> Self
pub fn from_scaling(scaling: T) -> Self
Creates a new similarity that applies only a scaling factor.
sourcepub fn inverse_mut(&mut self)
pub fn inverse_mut(&mut self)
Inverts self
in-place.
sourcepub fn prepend_scaling(&self, scaling: T) -> Self
pub fn prepend_scaling(&self, scaling: T) -> Self
The similarity transformation that applies a scaling factor scaling
before self
.
sourcepub fn append_scaling(&self, scaling: T) -> Self
pub fn append_scaling(&self, scaling: T) -> Self
The similarity transformation that applies a scaling factor scaling
after self
.
sourcepub fn prepend_scaling_mut(&mut self, scaling: T)
pub fn prepend_scaling_mut(&mut self, scaling: T)
Sets self
to the similarity transformation that applies a scaling factor scaling
before self
.
sourcepub fn append_scaling_mut(&mut self, scaling: T)
pub fn append_scaling_mut(&mut self, scaling: T)
Sets self
to the similarity transformation that applies a scaling factor scaling
after self
.
sourcepub fn append_translation_mut(&mut self, t: &Translation<T, D>)
pub fn append_translation_mut(&mut self, t: &Translation<T, D>)
Appends to self
the given translation in-place.
sourcepub fn append_rotation_mut(&mut self, r: &R)
pub fn append_rotation_mut(&mut self, r: &R)
Appends to self
the given rotation in-place.
sourcepub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<T, D>)
pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<T, D>)
Appends in-place to self
a rotation centered at the point p
, i.e., the rotation that
lets p
invariant.
sourcepub fn append_rotation_wrt_center_mut(&mut self, r: &R)
pub fn append_rotation_wrt_center_mut(&mut self, r: &R)
Appends in-place to self
a rotation centered at the point with coordinates
self.translation
.
sourcepub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
Transform the given point by this similarity.
This is the same as the multiplication self * pt
.
§Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
let sim = Similarity3::new(translation, axisangle, 3.0);
let transformed_point = sim.transform_point(&Point3::new(4.0, 5.0, 6.0));
assert_relative_eq!(transformed_point, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
sourcepub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
pub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
Transform the given vector by this similarity, ignoring the translational component.
This is the same as the multiplication self * t
.
§Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
let sim = Similarity3::new(translation, axisangle, 3.0);
let transformed_vector = sim.transform_vector(&Vector3::new(4.0, 5.0, 6.0));
assert_relative_eq!(transformed_vector, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
sourcepub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D>
Transform the given point by the inverse of this similarity. This may be cheaper than inverting the similarity and then transforming the given point.
§Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
let sim = Similarity3::new(translation, axisangle, 2.0);
let transformed_point = sim.inverse_transform_point(&Point3::new(4.0, 5.0, 6.0));
assert_relative_eq!(transformed_point, Point3::new(-1.5, 1.5, 1.5), epsilon = 1.0e-5);
sourcepub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
pub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>
Transform the given vector by the inverse of this similarity, ignoring the translational component. This may be cheaper than inverting the similarity and then transforming the given vector.
§Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
let sim = Similarity3::new(translation, axisangle, 2.0);
let transformed_vector = sim.inverse_transform_vector(&Vector3::new(4.0, 5.0, 6.0));
assert_relative_eq!(transformed_vector, Vector3::new(-3.0, 2.5, 2.0), epsilon = 1.0e-5);
source§impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>
sourcepub fn to_homogeneous(
&self,
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
pub fn to_homogeneous(
&self,
) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
Converts this similarity into its equivalent homogeneous transformation matrix.
source§impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>
source§impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>
sourcepub fn rotation_wrt_point(r: R, p: Point<T, D>, scaling: T) -> Self
pub fn rotation_wrt_point(r: R, p: Point<T, D>, scaling: T) -> Self
The similarity that applies the scaling factor scaling
, followed by the rotation r
with
its axis passing through the point p
.
§Example
let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
let pt = Point2::new(3.0, 2.0);
let sim = Similarity2::rotation_wrt_point(rot, pt, 4.0);
assert_relative_eq!(sim * Point2::new(1.0, 2.0), Point2::new(-3.0, 3.0), epsilon = 1.0e-6);
source§impl<T: SimdRealField> Similarity<T, Rotation2<T>, 2>where
T::Element: SimdRealField,
impl<T: SimdRealField> Similarity<T, Rotation2<T>, 2>where
T::Element: SimdRealField,
sourcepub fn new(translation: Vector2<T>, angle: T, scaling: T) -> Self
pub fn new(translation: Vector2<T>, angle: T, scaling: T) -> Self
Creates a new similarity from a translation, a rotation, and an uniform scaling factor.
§Example
let sim = SimilarityMatrix2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2, 3.0);
assert_relative_eq!(sim * Point2::new(2.0, 4.0), Point2::new(-11.0, 8.0), epsilon = 1.0e-6);
source§impl<T: SimdRealField> Similarity<T, UnitComplex<T>, 2>where
T::Element: SimdRealField,
impl<T: SimdRealField> Similarity<T, UnitComplex<T>, 2>where
T::Element: SimdRealField,
sourcepub fn new(translation: Vector2<T>, angle: T, scaling: T) -> Self
pub fn new(translation: Vector2<T>, angle: T, scaling: T) -> Self
Creates a new similarity from a translation and a rotation angle.
§Example
let sim = Similarity2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2, 3.0);
assert_relative_eq!(sim * Point2::new(2.0, 4.0), Point2::new(-11.0, 8.0), epsilon = 1.0e-6);
sourcepub fn cast<To: Scalar>(self) -> Similarity<To, UnitComplex<To>, 2>
pub fn cast<To: Scalar>(self) -> Similarity<To, UnitComplex<To>, 2>
Cast the components of self
to another type.
§Example
let sim = Similarity2::<f64>::identity();
let sim2 = sim.cast::<f32>();
assert_eq!(sim2, Similarity2::<f32>::identity());
source§impl<T: SimdRealField> Similarity<T, Rotation3<T>, 3>where
T::Element: SimdRealField,
impl<T: SimdRealField> Similarity<T, Rotation3<T>, 3>where
T::Element: SimdRealField,
sourcepub fn new(translation: Vector3<T>, axisangle: Vector3<T>, scaling: T) -> Self
pub fn new(translation: Vector3<T>, axisangle: Vector3<T>, scaling: T) -> Self
Creates a new similarity from a translation, rotation axis-angle, and scaling factor.
§Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
// Similarity with its rotation part represented as a UnitQuaternion
let sim = Similarity3::new(translation, axisangle, 3.0);
assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
// Similarity with its rotation part represented as a Rotation3 (a 3x3 rotation matrix).
let sim = SimilarityMatrix3::new(translation, axisangle, 3.0);
assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
sourcepub fn cast<To: Scalar>(self) -> Similarity<To, Rotation3<To>, 3>
pub fn cast<To: Scalar>(self) -> Similarity<To, Rotation3<To>, 3>
Cast the components of self
to another type.
§Example
let sim = Similarity3::<f64>::identity();
let sim2 = sim.cast::<f32>();
assert_eq!(sim2, Similarity3::<f32>::identity());
sourcepub fn face_towards(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T,
) -> Self
pub fn face_towards( eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>, scaling: T, ) -> Self
Creates an similarity that corresponds to a scaling factor and a local frame of
an observer standing at the point eye
and looking toward target
.
It maps the view direction target - eye
to the positive z
axis and the origin to the
eye
.
§Arguments
- eye - The observer position.
- target - The target position.
- up - Vertical direction. The only requirement of this parameter is to not be collinear
to
eye - at
. Non-collinearity is not checked.
§Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();
// Similarity with its rotation part represented as a UnitQuaternion
let sim = Similarity3::face_towards(&eye, &target, &up, 3.0);
assert_eq!(sim * Point3::origin(), eye);
assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);
// Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let sim = SimilarityMatrix3::face_towards(&eye, &target, &up, 3.0);
assert_eq!(sim * Point3::origin(), eye);
assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);
sourcepub fn new_observer_frames(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T,
) -> Self
👎Deprecated: renamed to face_towards
pub fn new_observer_frames( eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>, scaling: T, ) -> Self
face_towards
Deprecated: Use [SimilarityMatrix3::face_towards
] instead.
sourcepub fn look_at_rh(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T,
) -> Self
pub fn look_at_rh( eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>, scaling: T, ) -> Self
Builds a right-handed look-at view matrix including scaling factor.
This conforms to the common notion of right handed look-at matrix from the computer graphics community.
§Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
§Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();
// Similarity with its rotation part represented as a UnitQuaternion
let iso = Similarity3::look_at_rh(&eye, &target, &up, 3.0);
assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);
// Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = SimilarityMatrix3::look_at_rh(&eye, &target, &up, 3.0);
assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);
sourcepub fn look_at_lh(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T,
) -> Self
pub fn look_at_lh( eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>, scaling: T, ) -> Self
Builds a left-handed look-at view matrix including a scaling factor.
This conforms to the common notion of left handed look-at matrix from the computer graphics community.
§Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
§Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();
// Similarity with its rotation part represented as a UnitQuaternion
let sim = Similarity3::look_at_lh(&eye, &target, &up, 3.0);
assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);
// Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let sim = SimilarityMatrix3::look_at_lh(&eye, &target, &up, 3.0);
assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);
source§impl<T: SimdRealField> Similarity<T, UnitQuaternion<T>, 3>where
T::Element: SimdRealField,
impl<T: SimdRealField> Similarity<T, UnitQuaternion<T>, 3>where
T::Element: SimdRealField,
sourcepub fn new(translation: Vector3<T>, axisangle: Vector3<T>, scaling: T) -> Self
pub fn new(translation: Vector3<T>, axisangle: Vector3<T>, scaling: T) -> Self
Creates a new similarity from a translation, rotation axis-angle, and scaling factor.
§Example
let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);
// Similarity with its rotation part represented as a UnitQuaternion
let sim = Similarity3::new(translation, axisangle, 3.0);
assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
// Similarity with its rotation part represented as a Rotation3 (a 3x3 rotation matrix).
let sim = SimilarityMatrix3::new(translation, axisangle, 3.0);
assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
sourcepub fn cast<To: Scalar>(self) -> Similarity<To, UnitQuaternion<To>, 3>
pub fn cast<To: Scalar>(self) -> Similarity<To, UnitQuaternion<To>, 3>
Cast the components of self
to another type.
§Example
let sim = Similarity3::<f64>::identity();
let sim2 = sim.cast::<f32>();
assert_eq!(sim2, Similarity3::<f32>::identity());
sourcepub fn face_towards(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T,
) -> Self
pub fn face_towards( eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>, scaling: T, ) -> Self
Creates an similarity that corresponds to a scaling factor and a local frame of
an observer standing at the point eye
and looking toward target
.
It maps the view direction target - eye
to the positive z
axis and the origin to the
eye
.
§Arguments
- eye - The observer position.
- target - The target position.
- up - Vertical direction. The only requirement of this parameter is to not be collinear
to
eye - at
. Non-collinearity is not checked.
§Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();
// Similarity with its rotation part represented as a UnitQuaternion
let sim = Similarity3::face_towards(&eye, &target, &up, 3.0);
assert_eq!(sim * Point3::origin(), eye);
assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);
// Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let sim = SimilarityMatrix3::face_towards(&eye, &target, &up, 3.0);
assert_eq!(sim * Point3::origin(), eye);
assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);
sourcepub fn new_observer_frames(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T,
) -> Self
👎Deprecated: renamed to face_towards
pub fn new_observer_frames( eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>, scaling: T, ) -> Self
face_towards
Deprecated: Use [SimilarityMatrix3::face_towards
] instead.
sourcepub fn look_at_rh(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T,
) -> Self
pub fn look_at_rh( eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>, scaling: T, ) -> Self
Builds a right-handed look-at view matrix including scaling factor.
This conforms to the common notion of right handed look-at matrix from the computer graphics community.
§Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
§Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();
// Similarity with its rotation part represented as a UnitQuaternion
let iso = Similarity3::look_at_rh(&eye, &target, &up, 3.0);
assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);
// Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = SimilarityMatrix3::look_at_rh(&eye, &target, &up, 3.0);
assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);
sourcepub fn look_at_lh(
eye: &Point3<T>,
target: &Point3<T>,
up: &Vector3<T>,
scaling: T,
) -> Self
pub fn look_at_lh( eye: &Point3<T>, target: &Point3<T>, up: &Vector3<T>, scaling: T, ) -> Self
Builds a left-handed look-at view matrix including a scaling factor.
This conforms to the common notion of left handed look-at matrix from the computer graphics community.
§Arguments
- eye - The eye position.
- target - The target position.
- up - A vector approximately aligned with required the vertical axis. The only
requirement of this parameter is to not be collinear to
target - eye
.
§Example
let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();
// Similarity with its rotation part represented as a UnitQuaternion
let sim = Similarity3::look_at_lh(&eye, &target, &up, 3.0);
assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);
// Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let sim = SimilarityMatrix3::look_at_lh(&eye, &target, &up, 3.0);
assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);
Trait Implementations§
source§impl<T: RealField, R, const D: usize> AbsDiffEq for Similarity<T, R, D>
impl<T: RealField, R, const D: usize> AbsDiffEq for Similarity<T, R, D>
source§fn default_epsilon() -> Self::Epsilon
fn default_epsilon() -> Self::Epsilon
source§fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
source§fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
AbsDiffEq::abs_diff_eq
.source§impl<T: Clone, R: Clone, const D: usize> Clone for Similarity<T, R, D>
impl<T: Clone, R: Clone, const D: usize> Clone for Similarity<T, R, D>
source§fn clone(&self) -> Similarity<T, R, D>
fn clone(&self) -> Similarity<T, R, D>
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl<T: SimdRealField, R, const D: usize> Default for Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> Default for Similarity<T, R, D>
source§impl<'de, T, R, const D: usize> Deserialize<'de> for Similarity<T, R, D>where
T: Scalar + Deserialize<'de>,
R: Deserialize<'de>,
DefaultAllocator: Allocator<T, Const<D>>,
Owned<T, Const<D>>: Deserialize<'de>,
impl<'de, T, R, const D: usize> Deserialize<'de> for Similarity<T, R, D>where
T: Scalar + Deserialize<'de>,
R: Deserialize<'de>,
DefaultAllocator: Allocator<T, Const<D>>,
Owned<T, Const<D>>: Deserialize<'de>,
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
source§impl<T, R, const D: usize> Display for Similarity<T, R, D>
impl<T, R, const D: usize> Display for Similarity<T, R, D>
source§impl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Isometry<T, R, D>> for &'a Similarity<T, R, D>
impl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Isometry<T, R, D>> for &'a Similarity<T, R, D>
source§impl<'b, T: SimdRealField, R, const D: usize> Div<&'b Isometry<T, R, D>> for Similarity<T, R, D>
impl<'b, T: SimdRealField, R, const D: usize> Div<&'b Isometry<T, R, D>> for Similarity<T, R, D>
source§impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Div<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for &'a Isometry<T, R, D>
impl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for &'a Isometry<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
/
operator.source§impl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for &'a Similarity<T, R, D>
impl<'a, 'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for &'a Similarity<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
/
operator.source§impl<'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for Isometry<T, R, D>
impl<'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for Isometry<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
/
operator.source§impl<'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for Similarity<T, R, D>
impl<'b, T: SimdRealField, R, const D: usize> Div<&'b Similarity<T, R, D>> for Similarity<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
/
operator.source§impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Div<&'b Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, const D: usize> Div<&'b Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Div<&'b Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Div<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
/
operator.source§fn div(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn div(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
/
operation. Read moresource§impl<'b, T: SimdRealField> Div<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
/
operator.source§fn div(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn div(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
/
operation. Read moresource§impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
/
operator.source§impl<'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Div<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
/
operator.source§impl<'a, T: SimdRealField, R, const D: usize> Div<Isometry<T, R, D>> for &'a Similarity<T, R, D>
impl<'a, T: SimdRealField, R, const D: usize> Div<Isometry<T, R, D>> for &'a Similarity<T, R, D>
source§impl<T: SimdRealField, R, const D: usize> Div<Isometry<T, R, D>> for Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> Div<Isometry<T, R, D>> for Similarity<T, R, D>
source§impl<'a, T: SimdRealField, const D: usize> Div<Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Div<Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<T: SimdRealField, const D: usize> Div<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Div<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for &'a Isometry<T, R, D>
impl<'a, T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for &'a Isometry<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
/
operator.source§impl<'a, T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for &'a Similarity<T, R, D>
impl<'a, T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for &'a Similarity<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
/
operator.source§impl<T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for Isometry<T, R, D>
impl<T: SimdRealField, R, const D: usize> Div<Similarity<T, R, D>> for Isometry<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
/
operator.source§impl<'a, T: SimdRealField, const D: usize> Div<Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Div<Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
source§impl<T: SimdRealField, const D: usize> Div<Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Div<Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Div<Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
/
operator.source§fn div(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn div(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
/
operation. Read moresource§impl<T: SimdRealField> Div<Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
/
operator.source§fn div(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn div(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
/
operation. Read moresource§impl<'a, T: SimdRealField> Div<Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2>where
T::Element: SimdRealField,
source§impl<T: SimdRealField> Div<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Div<Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Div<Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
/
operator.source§impl<T: SimdRealField> Div<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>where
T::Element: SimdRealField,
impl<T: SimdRealField> Div<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
/
operator.source§impl<T: SimdRealField, R, const D: usize> Div for Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> Div for Similarity<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
/
operator.source§impl<'b, T: SimdRealField, R, const D: usize> DivAssign<&'b Isometry<T, R, D>> for Similarity<T, R, D>
impl<'b, T: SimdRealField, R, const D: usize> DivAssign<&'b Isometry<T, R, D>> for Similarity<T, R, D>
source§fn div_assign(&mut self, rhs: &'b Isometry<T, R, D>)
fn div_assign(&mut self, rhs: &'b Isometry<T, R, D>)
/=
operation. Read moresource§impl<'b, T, const D: usize> DivAssign<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>
impl<'b, T, const D: usize> DivAssign<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>
source§fn div_assign(&mut self, rhs: &'b Rotation<T, D>)
fn div_assign(&mut self, rhs: &'b Rotation<T, D>)
/=
operation. Read moresource§impl<'b, T: SimdRealField, R, const D: usize> DivAssign<&'b Similarity<T, R, D>> for Similarity<T, R, D>
impl<'b, T: SimdRealField, R, const D: usize> DivAssign<&'b Similarity<T, R, D>> for Similarity<T, R, D>
source§fn div_assign(&mut self, rhs: &'b Similarity<T, R, D>)
fn div_assign(&mut self, rhs: &'b Similarity<T, R, D>)
/=
operation. Read moresource§impl<'b, T> DivAssign<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>
impl<'b, T> DivAssign<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>
source§fn div_assign(&mut self, rhs: &'b UnitComplex<T>)
fn div_assign(&mut self, rhs: &'b UnitComplex<T>)
/=
operation. Read moresource§impl<'b, T> DivAssign<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>
impl<'b, T> DivAssign<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>
source§fn div_assign(&mut self, rhs: &'b UnitQuaternion<T>)
fn div_assign(&mut self, rhs: &'b UnitQuaternion<T>)
/=
operation. Read moresource§impl<T: SimdRealField, R, const D: usize> DivAssign<Isometry<T, R, D>> for Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> DivAssign<Isometry<T, R, D>> for Similarity<T, R, D>
source§fn div_assign(&mut self, rhs: Isometry<T, R, D>)
fn div_assign(&mut self, rhs: Isometry<T, R, D>)
/=
operation. Read moresource§impl<T, const D: usize> DivAssign<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>
impl<T, const D: usize> DivAssign<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>
source§fn div_assign(&mut self, rhs: Rotation<T, D>)
fn div_assign(&mut self, rhs: Rotation<T, D>)
/=
operation. Read moresource§impl<T> DivAssign<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>
impl<T> DivAssign<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>
source§fn div_assign(&mut self, rhs: UnitComplex<T>)
fn div_assign(&mut self, rhs: UnitComplex<T>)
/=
operation. Read moresource§impl<T> DivAssign<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>
impl<T> DivAssign<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>
source§fn div_assign(&mut self, rhs: UnitQuaternion<T>)
fn div_assign(&mut self, rhs: UnitQuaternion<T>)
/=
operation. Read moresource§impl<T: SimdRealField, R, const D: usize> DivAssign for Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> DivAssign for Similarity<T, R, D>
source§fn div_assign(&mut self, rhs: Similarity<T, R, D>)
fn div_assign(&mut self, rhs: Similarity<T, R, D>)
/=
operation. Read moresource§impl<T, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 16]> for Similarity<T, R, D>
impl<T, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 16]> for Similarity<T, R, D>
source§impl<T, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 2]> for Similarity<T, R, D>
impl<T, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 2]> for Similarity<T, R, D>
source§impl<T, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 4]> for Similarity<T, R, D>
impl<T, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 4]> for Similarity<T, R, D>
source§impl<T, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 8]> for Similarity<T, R, D>
impl<T, R, const D: usize> From<[Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>; 8]> for Similarity<T, R, D>
source§impl<T: SimdRealField, R, const D: usize> From<Similarity<T, R, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T: SimdRealField, R, const D: usize> From<Similarity<T, R, D>> for OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>where
Const<D>: DimNameAdd<U1>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn from(sim: Similarity<T, R, D>) -> Self
fn from(sim: Similarity<T, R, D>) -> Self
source§impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Similarity<T, R, D>
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for &'a Similarity<T, R, D>
source§impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Similarity<T, R, D>
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Isometry<T, R, D>> for Similarity<T, R, D>
source§impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for &'a Similarity<T, R, D>
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for &'a Similarity<T, R, D>
source§impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for Similarity<T, R, D>
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for Similarity<T, R, D>
source§impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b OPoint<T, Const<D>>> for &'a Similarity<T, R, D>
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b OPoint<T, Const<D>>> for &'a Similarity<T, R, D>
source§impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b OPoint<T, Const<D>>> for Similarity<T, R, D>
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b OPoint<T, Const<D>>> for Similarity<T, R, D>
source§impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Mul<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Isometry<T, R, D>
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Isometry<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
*
operator.source§impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Similarity<T, R, D>
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Similarity<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
*
operator.source§impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
*
operator.source§impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Translation<T, D>
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for &'a Translation<T, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
*
operator.source§impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Isometry<T, R, D>
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Isometry<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
*
operator.source§impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Similarity<T, R, D>
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Similarity<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
*
operator.source§impl<'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
*
operator.source§impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Translation<T, D>
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Similarity<T, R, D>> for Translation<T, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
*
operator.source§impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField, const D: usize> Mul<&'b Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField, const D: usize> Mul<&'b Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField, const D: usize> Mul<&'b Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Complex<T>>, 2>> for &'a UnitComplex<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Complex<T>>, 2>> for &'a UnitComplex<T>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Complex<T>>, 2>
type Output = Similarity<T, Unit<Complex<T>>, 2>
*
operator.source§fn mul(self, rhs: &'b Similarity<T, UnitComplex<T>, 2>) -> Self::Output
fn mul(self, rhs: &'b Similarity<T, UnitComplex<T>, 2>) -> Self::Output
*
operation. Read moresource§impl<'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Complex<T>>, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Complex<T>>, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Complex<T>>, 2>
type Output = Similarity<T, Unit<Complex<T>>, 2>
*
operator.source§fn mul(self, rhs: &'b Similarity<T, UnitComplex<T>, 2>) -> Self::Output
fn mul(self, rhs: &'b Similarity<T, UnitComplex<T>, 2>) -> Self::Output
*
operation. Read moresource§impl<'a, 'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
*
operator.source§fn mul(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn mul(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
*
operation. Read moresource§impl<'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
*
operator.source§fn mul(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn mul(self, right: &'b Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
*
operation. Read moresource§impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Similarity<T, R, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, 'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for &'a Similarity<T, R, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for Similarity<T, R, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> Mul<&'b Transform<T, C, D>> for Similarity<T, R, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for &'a Similarity<T, R, D>
impl<'a, 'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for &'a Similarity<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
*
operator.source§impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for Similarity<T, R, D>
impl<'b, T: SimdRealField, R, const D: usize> Mul<&'b Translation<T, D>> for Similarity<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
*
operator.source§impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2>where
T::Element: SimdRealField,
source§impl<'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>where
T::Element: SimdRealField,
source§impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3>where
T::Element: SimdRealField,
impl<'a, 'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
*
operator.source§impl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>where
T::Element: SimdRealField,
impl<'b, T: SimdRealField> Mul<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
*
operator.source§impl<'a, T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Similarity<T, R, D>
impl<'a, T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for &'a Similarity<T, R, D>
source§impl<T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> Mul<Isometry<T, R, D>> for Similarity<T, R, D>
source§impl<'a, T: SimdRealField, R, const D: usize> Mul<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for &'a Similarity<T, R, D>
impl<'a, T: SimdRealField, R, const D: usize> Mul<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for &'a Similarity<T, R, D>
source§impl<T: SimdRealField, R, const D: usize> Mul<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> Mul<Matrix<T, Const<D>, Const<1>, ArrayStorage<T, D, 1>>> for Similarity<T, R, D>
source§impl<'a, T: SimdRealField, R, const D: usize> Mul<OPoint<T, Const<D>>> for &'a Similarity<T, R, D>
impl<'a, T: SimdRealField, R, const D: usize> Mul<OPoint<T, Const<D>>> for &'a Similarity<T, R, D>
source§impl<T: SimdRealField, R, const D: usize> Mul<OPoint<T, Const<D>>> for Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> Mul<OPoint<T, Const<D>>> for Similarity<T, R, D>
source§impl<'a, T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for &'a Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Mul<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Isometry<T, R, D>
impl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Isometry<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
*
operator.source§impl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Similarity<T, R, D>
impl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Similarity<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
*
operator.source§impl<'a, T, C, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
*
operator.source§impl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Translation<T, D>
impl<'a, T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for &'a Translation<T, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
*
operator.source§impl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Isometry<T, R, D>
impl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Isometry<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
*
operator.source§impl<T, C, R, const D: usize> Mul<Similarity<T, R, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> Mul<Similarity<T, R, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
type Output = Transform<T, <C as TCategoryMul<TAffine>>::Representative, D>
*
operator.source§impl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Translation<T, D>
impl<T: SimdRealField, R, const D: usize> Mul<Similarity<T, R, D>> for Translation<T, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
*
operator.source§impl<'a, T: SimdRealField, const D: usize> Mul<Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField, const D: usize> Mul<Similarity<T, Rotation<T, D>, D>> for &'a Rotation<T, D>where
T::Element: SimdRealField,
source§impl<T: SimdRealField, const D: usize> Mul<Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
impl<T: SimdRealField, const D: usize> Mul<Similarity<T, Rotation<T, D>, D>> for Rotation<T, D>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Mul<Similarity<T, Unit<Complex<T>>, 2>> for &'a UnitComplex<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Similarity<T, Unit<Complex<T>>, 2>> for &'a UnitComplex<T>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Complex<T>>, 2>
type Output = Similarity<T, Unit<Complex<T>>, 2>
*
operator.source§fn mul(self, rhs: Similarity<T, UnitComplex<T>, 2>) -> Self::Output
fn mul(self, rhs: Similarity<T, UnitComplex<T>, 2>) -> Self::Output
*
operation. Read moresource§impl<T: SimdRealField> Mul<Similarity<T, Unit<Complex<T>>, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Similarity<T, Unit<Complex<T>>, 2>> for UnitComplex<T>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Complex<T>>, 2>
type Output = Similarity<T, Unit<Complex<T>>, 2>
*
operator.source§fn mul(self, rhs: Similarity<T, UnitComplex<T>, 2>) -> Self::Output
fn mul(self, rhs: Similarity<T, UnitComplex<T>, 2>) -> Self::Output
*
operation. Read moresource§impl<'a, T: SimdRealField> Mul<Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Similarity<T, Unit<Quaternion<T>>, 3>> for &'a UnitQuaternion<T>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
*
operator.source§fn mul(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn mul(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
*
operation. Read moresource§impl<T: SimdRealField> Mul<Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Similarity<T, Unit<Quaternion<T>>, 3>> for UnitQuaternion<T>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
*
operator.source§fn mul(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
fn mul(self, right: Similarity<T, UnitQuaternion<T>, 3>) -> Self::Output
*
operation. Read moresource§impl<'a, T, C, R, const D: usize> Mul<Transform<T, C, D>> for &'a Similarity<T, R, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'a, T, C, R, const D: usize> Mul<Transform<T, C, D>> for &'a Similarity<T, R, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<T, C, R, const D: usize> Mul<Transform<T, C, D>> for Similarity<T, R, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> Mul<Transform<T, C, D>> for Similarity<T, R, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategoryMul<TAffine>,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§impl<'a, T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for &'a Similarity<T, R, D>
impl<'a, T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for &'a Similarity<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
*
operator.source§impl<T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> Mul<Translation<T, D>> for Similarity<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
*
operator.source§impl<'a, T: SimdRealField> Mul<Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Unit<Complex<T>>> for &'a Similarity<T, UnitComplex<T>, 2>where
T::Element: SimdRealField,
source§impl<T: SimdRealField> Mul<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>where
T::Element: SimdRealField,
source§impl<'a, T: SimdRealField> Mul<Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3>where
T::Element: SimdRealField,
impl<'a, T: SimdRealField> Mul<Unit<Quaternion<T>>> for &'a Similarity<T, UnitQuaternion<T>, 3>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
*
operator.source§impl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>where
T::Element: SimdRealField,
impl<T: SimdRealField> Mul<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>where
T::Element: SimdRealField,
source§type Output = Similarity<T, Unit<Quaternion<T>>, 3>
type Output = Similarity<T, Unit<Quaternion<T>>, 3>
*
operator.source§impl<T: SimdRealField, R, const D: usize> Mul for Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> Mul for Similarity<T, R, D>
source§type Output = Similarity<T, R, D>
type Output = Similarity<T, R, D>
*
operator.source§impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Isometry<T, R, D>> for Similarity<T, R, D>
impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Isometry<T, R, D>> for Similarity<T, R, D>
source§fn mul_assign(&mut self, rhs: &'b Isometry<T, R, D>)
fn mul_assign(&mut self, rhs: &'b Isometry<T, R, D>)
*=
operation. Read moresource§impl<'b, T, const D: usize> MulAssign<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>
impl<'b, T, const D: usize> MulAssign<&'b Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>
source§fn mul_assign(&mut self, rhs: &'b Rotation<T, D>)
fn mul_assign(&mut self, rhs: &'b Rotation<T, D>)
*=
operation. Read moresource§impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Similarity<T, R, D>> for Similarity<T, R, D>
impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Similarity<T, R, D>> for Similarity<T, R, D>
source§fn mul_assign(&mut self, rhs: &'b Similarity<T, R, D>)
fn mul_assign(&mut self, rhs: &'b Similarity<T, R, D>)
*=
operation. Read moresource§impl<'b, T, C, R, const D: usize> MulAssign<&'b Similarity<T, R, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<'b, T, C, R, const D: usize> MulAssign<&'b Similarity<T, R, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn mul_assign(&mut self, rhs: &'b Similarity<T, R, D>)
fn mul_assign(&mut self, rhs: &'b Similarity<T, R, D>)
*=
operation. Read moresource§impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Translation<T, D>> for Similarity<T, R, D>
impl<'b, T: SimdRealField, R, const D: usize> MulAssign<&'b Translation<T, D>> for Similarity<T, R, D>
source§fn mul_assign(&mut self, rhs: &'b Translation<T, D>)
fn mul_assign(&mut self, rhs: &'b Translation<T, D>)
*=
operation. Read moresource§impl<'b, T> MulAssign<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>
impl<'b, T> MulAssign<&'b Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>
source§fn mul_assign(&mut self, rhs: &'b UnitComplex<T>)
fn mul_assign(&mut self, rhs: &'b UnitComplex<T>)
*=
operation. Read moresource§impl<'b, T> MulAssign<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>
impl<'b, T> MulAssign<&'b Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>
source§fn mul_assign(&mut self, rhs: &'b UnitQuaternion<T>)
fn mul_assign(&mut self, rhs: &'b UnitQuaternion<T>)
*=
operation. Read moresource§impl<T: SimdRealField, R, const D: usize> MulAssign<Isometry<T, R, D>> for Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> MulAssign<Isometry<T, R, D>> for Similarity<T, R, D>
source§fn mul_assign(&mut self, rhs: Isometry<T, R, D>)
fn mul_assign(&mut self, rhs: Isometry<T, R, D>)
*=
operation. Read moresource§impl<T, const D: usize> MulAssign<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>
impl<T, const D: usize> MulAssign<Rotation<T, D>> for Similarity<T, Rotation<T, D>, D>
source§fn mul_assign(&mut self, rhs: Rotation<T, D>)
fn mul_assign(&mut self, rhs: Rotation<T, D>)
*=
operation. Read moresource§impl<T, C, R, const D: usize> MulAssign<Similarity<T, R, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T, C, R, const D: usize> MulAssign<Similarity<T, R, D>> for Transform<T, C, D>where
T: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
Const<D>: DimNameAdd<U1>,
C: TCategory,
R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
DefaultAllocator: Allocator<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn mul_assign(&mut self, rhs: Similarity<T, R, D>)
fn mul_assign(&mut self, rhs: Similarity<T, R, D>)
*=
operation. Read moresource§impl<T: SimdRealField, R, const D: usize> MulAssign<Translation<T, D>> for Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> MulAssign<Translation<T, D>> for Similarity<T, R, D>
source§fn mul_assign(&mut self, rhs: Translation<T, D>)
fn mul_assign(&mut self, rhs: Translation<T, D>)
*=
operation. Read moresource§impl<T> MulAssign<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>
impl<T> MulAssign<Unit<Complex<T>>> for Similarity<T, UnitComplex<T>, 2>
source§fn mul_assign(&mut self, rhs: UnitComplex<T>)
fn mul_assign(&mut self, rhs: UnitComplex<T>)
*=
operation. Read moresource§impl<T> MulAssign<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>
impl<T> MulAssign<Unit<Quaternion<T>>> for Similarity<T, UnitQuaternion<T>, 3>
source§fn mul_assign(&mut self, rhs: UnitQuaternion<T>)
fn mul_assign(&mut self, rhs: UnitQuaternion<T>)
*=
operation. Read moresource§impl<T: SimdRealField, R, const D: usize> MulAssign for Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> MulAssign for Similarity<T, R, D>
source§fn mul_assign(&mut self, rhs: Similarity<T, R, D>)
fn mul_assign(&mut self, rhs: Similarity<T, R, D>)
*=
operation. Read moresource§impl<T: SimdRealField, R, const D: usize> One for Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> One for Similarity<T, R, D>
source§impl<T: SimdRealField, R, const D: usize> PartialEq for Similarity<T, R, D>where
R: AbstractRotation<T, D> + PartialEq,
impl<T: SimdRealField, R, const D: usize> PartialEq for Similarity<T, R, D>where
R: AbstractRotation<T, D> + PartialEq,
source§impl<T: RealField, R, const D: usize> RelativeEq for Similarity<T, R, D>
impl<T: RealField, R, const D: usize> RelativeEq for Similarity<T, R, D>
source§fn default_max_relative() -> Self::Epsilon
fn default_max_relative() -> Self::Epsilon
source§fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool
fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool
source§fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool
fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool
RelativeEq::relative_eq
.source§impl<T, R, const D: usize> Serialize for Similarity<T, R, D>
impl<T, R, const D: usize> Serialize for Similarity<T, R, D>
source§impl<T: SimdRealField, R, const D: usize> SimdValue for Similarity<T, R, D>where
T::Element: SimdRealField,
R: SimdValue<SimdBool = T::SimdBool> + AbstractRotation<T, D>,
R::Element: AbstractRotation<T::Element, D>,
impl<T: SimdRealField, R, const D: usize> SimdValue for Similarity<T, R, D>where
T::Element: SimdRealField,
R: SimdValue<SimdBool = T::SimdBool> + AbstractRotation<T, D>,
R::Element: AbstractRotation<T::Element, D>,
source§type Element = Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>
type Element = Similarity<<T as SimdValue>::Element, <R as SimdValue>::Element, D>
source§type SimdBool = <T as SimdValue>::SimdBool
type SimdBool = <T as SimdValue>::SimdBool
self
.source§unsafe fn extract_unchecked(&self, i: usize) -> Self::Element
unsafe fn extract_unchecked(&self, i: usize) -> Self::Element
self
without bound-checking.source§unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
unsafe fn replace_unchecked(&mut self, i: usize, val: Self::Element)
self
by val
without bound-checking.source§impl<T1, T2, R, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>> for Similarity<T1, R, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, R, const D: usize> SubsetOf<Matrix<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output, <DefaultAllocator as Allocator<T2, <Const<D> as DimNameAdd<Const<1>>>::Output, <Const<D> as DimNameAdd<Const<1>>>::Output>>::Buffer>> for Similarity<T1, R, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn to_superset(
&self,
) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
fn to_superset( &self, ) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
self
to the equivalent element of its superset.source§fn is_in_subset(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
) -> bool
fn is_in_subset( m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>, ) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
) -> Self
fn from_superset_unchecked( m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>, ) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, R> SubsetOf<Similarity<T2, R, 2>> for UnitComplex<T1>
impl<T1, T2, R> SubsetOf<Similarity<T2, R, 2>> for UnitComplex<T1>
source§fn to_superset(&self) -> Similarity<T2, R, 2>
fn to_superset(&self) -> Similarity<T2, R, 2>
self
to the equivalent element of its superset.source§fn is_in_subset(sim: &Similarity<T2, R, 2>) -> bool
fn is_in_subset(sim: &Similarity<T2, R, 2>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(sim: &Similarity<T2, R, 2>) -> Self
fn from_superset_unchecked(sim: &Similarity<T2, R, 2>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, R> SubsetOf<Similarity<T2, R, 3>> for UnitQuaternion<T1>
impl<T1, T2, R> SubsetOf<Similarity<T2, R, 3>> for UnitQuaternion<T1>
source§fn to_superset(&self) -> Similarity<T2, R, 3>
fn to_superset(&self) -> Similarity<T2, R, 3>
self
to the equivalent element of its superset.source§fn is_in_subset(sim: &Similarity<T2, R, 3>) -> bool
fn is_in_subset(sim: &Similarity<T2, R, 3>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(sim: &Similarity<T2, R, 3>) -> Self
fn from_superset_unchecked(sim: &Similarity<T2, R, 3>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Rotation<T1, D>
impl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Rotation<T1, D>
source§fn to_superset(&self) -> Similarity<T2, R, D>
fn to_superset(&self) -> Similarity<T2, R, D>
self
to the equivalent element of its superset.source§fn is_in_subset(sim: &Similarity<T2, R, D>) -> bool
fn is_in_subset(sim: &Similarity<T2, R, D>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self
fn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Translation<T1, D>
impl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Translation<T1, D>
source§fn to_superset(&self) -> Similarity<T2, R, D>
fn to_superset(&self) -> Similarity<T2, R, D>
self
to the equivalent element of its superset.source§fn is_in_subset(sim: &Similarity<T2, R, D>) -> bool
fn is_in_subset(sim: &Similarity<T2, R, D>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self
fn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, R1, R2, const D: usize> SubsetOf<Similarity<T2, R2, D>> for Isometry<T1, R1, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R1: AbstractRotation<T1, D> + SubsetOf<R2>,
R2: AbstractRotation<T2, D>,
impl<T1, T2, R1, R2, const D: usize> SubsetOf<Similarity<T2, R2, D>> for Isometry<T1, R1, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
R1: AbstractRotation<T1, D> + SubsetOf<R2>,
R2: AbstractRotation<T2, D>,
source§fn to_superset(&self) -> Similarity<T2, R2, D>
fn to_superset(&self) -> Similarity<T2, R2, D>
self
to the equivalent element of its superset.source§fn is_in_subset(sim: &Similarity<T2, R2, D>) -> bool
fn is_in_subset(sim: &Similarity<T2, R2, D>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(sim: &Similarity<T2, R2, D>) -> Self
fn from_superset_unchecked(sim: &Similarity<T2, R2, D>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, R1, R2, const D: usize> SubsetOf<Similarity<T2, R2, D>> for Similarity<T1, R1, D>where
T1: RealField + SubsetOf<T2>,
T2: RealField + SupersetOf<T1>,
R1: AbstractRotation<T1, D> + SubsetOf<R2>,
R2: AbstractRotation<T2, D>,
impl<T1, T2, R1, R2, const D: usize> SubsetOf<Similarity<T2, R2, D>> for Similarity<T1, R1, D>where
T1: RealField + SubsetOf<T2>,
T2: RealField + SupersetOf<T1>,
R1: AbstractRotation<T1, D> + SubsetOf<R2>,
R2: AbstractRotation<T2, D>,
source§fn to_superset(&self) -> Similarity<T2, R2, D>
fn to_superset(&self) -> Similarity<T2, R2, D>
self
to the equivalent element of its superset.source§fn is_in_subset(sim: &Similarity<T2, R2, D>) -> bool
fn is_in_subset(sim: &Similarity<T2, R2, D>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(sim: &Similarity<T2, R2, D>) -> Self
fn from_superset_unchecked(sim: &Similarity<T2, R2, D>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2> SubsetOf<Similarity<T2, Unit<Quaternion<T2>>, 3>> for UnitDualQuaternion<T1>
impl<T1, T2> SubsetOf<Similarity<T2, Unit<Quaternion<T2>>, 3>> for UnitDualQuaternion<T1>
source§fn to_superset(&self) -> Similarity3<T2>
fn to_superset(&self) -> Similarity3<T2>
self
to the equivalent element of its superset.source§fn is_in_subset(sim: &Similarity3<T2>) -> bool
fn is_in_subset(sim: &Similarity3<T2>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(sim: &Similarity3<T2>) -> Self
fn from_superset_unchecked(sim: &Similarity3<T2>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T1, T2, R, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Similarity<T1, R, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
impl<T1, T2, R, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Similarity<T1, R, D>where
T1: RealField,
T2: RealField + SupersetOf<T1>,
C: SuperTCategoryOf<TAffine>,
R: AbstractRotation<T1, D> + SubsetOf<OMatrix<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> + SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>,
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> + Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
source§fn to_superset(&self) -> Transform<T2, C, D>
fn to_superset(&self) -> Transform<T2, C, D>
self
to the equivalent element of its superset.source§fn is_in_subset(t: &Transform<T2, C, D>) -> bool
fn is_in_subset(t: &Transform<T2, C, D>) -> bool
element
is actually part of the subset Self
(and can be converted to it).source§fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self
self.to_superset
but without any property checks. Always succeeds.source§impl<T: RealField, R, const D: usize> UlpsEq for Similarity<T, R, D>
impl<T: RealField, R, const D: usize> UlpsEq for Similarity<T, R, D>
impl<T: Copy, R: Copy, const D: usize> Copy for Similarity<T, R, D>
impl<T: SimdRealField, R, const D: usize> Eq for Similarity<T, R, D>where
R: AbstractRotation<T, D> + Eq,
Auto Trait Implementations§
impl<T, R, const D: usize> Freeze for Similarity<T, R, D>
impl<T, R, const D: usize> RefUnwindSafe for Similarity<T, R, D>where
T: RefUnwindSafe,
R: RefUnwindSafe,
impl<T, R, const D: usize> Send for Similarity<T, R, D>
impl<T, R, const D: usize> Sync for Similarity<T, R, D>
impl<T, R, const D: usize> Unpin for Similarity<T, R, D>
impl<T, R, const D: usize> UnwindSafe for Similarity<T, R, D>where
T: UnwindSafe,
R: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.