pub struct Joint<T: RealField> {
pub name: String,
pub joint_type: JointType<T>,
pub limits: Option<Range<T>>,
/* private fields */
}
Expand description
Joint with type
Fields§
§name: String
Name of this joint
joint_type: JointType<T>
Type of this joint
limits: Option<Range<T>>
Limits of this joint
Implementations§
source§impl<T> Joint<T>
impl<T> Joint<T>
sourcepub fn new(name: &str, joint_type: JointType<T>) -> Joint<T>
pub fn new(name: &str, joint_type: JointType<T>) -> Joint<T>
Create new Joint with name and type
§Examples
use nalgebra as na;
// create fixed joint
let fixed = k::Joint::<f32>::new("f0", k::JointType::Fixed);
assert!(fixed.joint_position().is_none());
// create rotational joint with Y-axis
let rot = k::Joint::<f64>::new("r0", k::JointType::Rotational { axis: na::Vector3::y_axis() });
assert_eq!(rot.joint_position().unwrap(), 0.0);
sourcepub fn set_joint_position(&mut self, position: T) -> Result<(), Error>
pub fn set_joint_position(&mut self, position: T) -> Result<(), Error>
Set the position of the joint
It returns Err if it is out of the limits, or this is fixed joint.
§Examples
use nalgebra as na;
// Create fixed joint
let mut fixed = k::Joint::<f32>::new("f0", k::JointType::Fixed);
// Set position to fixed joint always fails
assert!(fixed.set_joint_position(1.0).is_err());
// Create rotational joint with Y-axis
let mut rot = k::Joint::<f64>::new("r0", k::JointType::Rotational { axis: na::Vector3::y_axis() });
// As default, it has not limit
// Initial position is 0.0
assert_eq!(rot.joint_position().unwrap(), 0.0);
// If it has no limits, set_joint_position always succeeds.
rot.set_joint_position(0.2).unwrap();
assert_eq!(rot.joint_position().unwrap(), 0.2);
sourcepub fn set_joint_position_clamped(&mut self, position: T)
pub fn set_joint_position_clamped(&mut self, position: T)
Set the clamped position of the joint
It refers to the joint limit and clamps the argument. This function does nothing if this is fixed joint.
§Examples
use nalgebra as na;
// Create rotational joint with Y-axis
let mut rot = k::Joint::<f64>::new("r0", k::JointType::Rotational { axis: na::Vector3::y_axis() });
let limits = k::joint::Range::new(-1.0, 1.0);
rot.limits = Some(limits);
// Initial position is 0.0
assert_eq!(rot.joint_position().unwrap(), 0.0);
rot.set_joint_position_clamped(2.0);
assert_eq!(rot.joint_position().unwrap(), 1.0);
rot.set_joint_position_clamped(-2.0);
assert_eq!(rot.joint_position().unwrap(), -1.0);
pub fn set_joint_position_unchecked(&mut self, position: T)
sourcepub fn joint_position(&self) -> Option<T>
pub fn joint_position(&self) -> Option<T>
Returns the position (angle)
pub fn origin(&self) -> &Isometry3<T>
pub fn set_origin(&mut self, origin: Isometry3<T>)
pub fn set_joint_velocity(&mut self, velocity: T) -> Result<(), Error>
sourcepub fn joint_velocity(&self) -> Option<T>
pub fn joint_velocity(&self) -> Option<T>
Returns the velocity
sourcepub fn local_transform(&self) -> Isometry3<T>
pub fn local_transform(&self) -> Isometry3<T>
Calculate and returns the transform of the end of this joint
§Examples
use nalgebra as na;
// Create linear joint with X-axis
let mut lin = k::Joint::<f64>::new("l0", k::JointType::Linear { axis: na::Vector3::x_axis() });
assert_eq!(lin.local_transform().translation.vector.x, 0.0);
lin.set_joint_position(-1.0).unwrap();
assert_eq!(lin.local_transform().translation.vector.x, -1.0);
sourcepub fn world_transform(&self) -> Option<Isometry3<T>>
pub fn world_transform(&self) -> Option<Isometry3<T>>
Get the result of forward kinematics
The value is updated by Chain::update_transforms
pub fn world_velocity(&self) -> Option<Velocity<T>>
pub fn is_movable(&self) -> bool
sourcepub fn clear_caches(&self)
pub fn clear_caches(&self)
Clear caches defined in the world coordinate
Trait Implementations§
Auto Trait Implementations§
impl<T> !Freeze for Joint<T>
impl<T> !RefUnwindSafe for Joint<T>
impl<T> Send for Joint<T>
impl<T> !Sync for Joint<T>
impl<T> Unpin for Joint<T>where
T: Unpin,
impl<T> UnwindSafe for Joint<T>where
T: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
🔬This is a nightly-only experimental API. (
clone_to_uninit
)source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moresource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.