Functions§
- cbrtf
- Cbrt for given value for const context. This is simplified version just to make a good approximation on const context.
- ceil
- ceilf
- copysignfk
- Copies sign from
y
tox
- copysignk
- Copies sign from
y
tox
- dirty_
powf - Dirty fast pow
- exp
- Exp for given value for const context. This is simplified version just to make a good approximation on const context.
- expf
- Exp for given value for const context. This is simplified version just to make a good approximation on const context.
- f_acos
- Computes acos(x)
- f_acosf
- Compute acos
- f_acosh
- Huperbolic acos
- f_
acoshf - Hyperbolic arc cosine function
- f_
acospi - Computes acos(x)/PI
- f_
acospif - Computes acos(x)/PI
- f_asin
- Computes asin(x)
- f_asinf
- Computes asin
- f_asinh
- Huperbolic sine function
- f_
asinhf - Hyperbolic arcsine function
- f_
asinpi - Computes asin(x)/PI
- f_
asinpif - Computes asin(x)/PI
- f_atan
- Computes atan in double precision
- f_atan2
- Computes atan(x)
- f_
atan2f - Computes atan2
- f_
atan2pi - Computes atan(x)/PI
- f_
atan2pif - Computes atan(x/y) / PI
- f_atanf
- Computes atan
- f_atanh
- Hyperbolic arc tangent
- f_
atanhf - Hyperbolic atan
- f_
atanpi - Computes atan(x)/pi
- f_
atanpif - Computes atan(x)/PI
- f_beta
- Computes beta function
- f_betaf
- Computes beta function
- f_
betainc_ reg - Regularized incomplete beta
- f_
betainc_ regf - Regularized incomplete beta
- f_
cathetus - Computes the missing leg of a right triangle
- f_
cathetusf - Computes the missing leg of a right triangle
- f_cbrt
- Computes cube root
- f_cbrtf
- Computes cube root
- f_
compound - Computes (1+x)^y
- f_
compound_ m1 - Computes (1+x)^y - 1
- f_
compound_ m1f - Computes compound (1.0 + x)^y - 1
- f_
compoundf - Computes compound function (1.0 + x)^y
- f_cos
- Cosine for double precision
- f_cosf
- Computes cosine function
- f_cosh
- Hyperbolic cosine function
- f_coshf
- Hyperbolic cos
- f_cosm1
- Computes cos(x) - 1
- f_
cosm1f - Computes cos(x) - 1
- f_cospi
- Computes cos(PI*x)
- f_
cospif - Computes cos(PI*x)
- f_cot
- Cotangent in double precision
- f_cotf
- Computes cotangent
- f_cotpi
- Computes cotangent 1/tan(PI*x)
- f_
cotpif - Computes 1/tan(PI*x)
- f_csc
- Cosecant for double precision
- f_cscf
- Cosecant ( 1 / sin(x) )
- f_
digamma - Computes digamma(x)
- f_
digammaf - Computes digamma(x)
- f_erf
- Error function
- f_erfc
- Complementary error function
- f_erfcf
- Complementary error function
- f_
erfcinv - Complementary inverse error function
- f_
erfcinvf - Complementary inverse error function
- f_erfcx
- Scaled complementary error function (exp(x^2)*erfc(x))
- f_
erfcxf - Scaled complementary error function (exp(x^2)*erfc(x))
- f_erff
- Error function
- f_
erfinv - Inverse error function
- f_
erfinvf - Inverse error function
- f_exp
- Computes exponent
- f_exp2
- Computes exp2
- f_exp2f
- Computing exp2f
- f_
exp2m1 - Computes 2^x - 1
- f_
exp2m1f - Computes 2^x - 1
- f_exp10
- Computes exp10
- f_
exp10f - Computes exp10
- f_
exp10m1 - Computes 10^x - 1
- f_
exp10m1f - Computes 10^x - 1
- f_expf
- Computes exp
- f_expm1
- Computes e^x - 1
- f_
expm1f - Computes e^x - 1
- f_
gamma_ p - Regularized lower incomplete gamma
- f_
gamma_ pf - Regularized lower incomplete gamma
- f_
gamma_ q - Regularized upper incomplete gamma
- f_
gamma_ qf - Regularized upper incomplete gamma
- f_hypot
- Computes hypot
- f_
hypot3f - f_
hypotf - Hypot function
- f_i0
- Modified Bessel of the first kind of order 0
- f_i0e
- Modified exponentially scaled Bessel of the first kind of order 0
- f_i0ef
- Modified exponentially scaled Bessel of the first kind of order 0
- f_i0f
- Modified Bessel of the first kind of order 0
- f_i1
- Modified Bessel of the first kind of order 1
- f_i2
- Modified bessel of the first kind of order 2
- f_i1e
- Modified exponentially scaled Bessel of the first kind of order 1
- f_i1ef
- Modified exponentially scaled Bessel of the first kind of order 1
- f_i1f
- Modified Bessel of the first kind of order 1
- f_i2f
- Modified Bessel of the first kind of order 2
- f_j0
- Bessel of the first kind of order 0
- f_j0f
- Bessel of the first kind of order 0
- f_j1
- Bessel of the first kind of order 1
- f_j1f
- Bessel of the first kind of order 1
- f_
jincpi - Normalized jinc 2*J1(PI*x)/(pi*x)
- f_
jincpif - Normalized jinc 2*J1(PI*x)/(pi*x)
- f_k0
- Modified Bessel of the second kind of order 0
- f_k0e
- Modified exponentially scaled Bessel of the first kind of order 0
- f_k0ef
- Modified exponentially scaled Bessel of the first kind of order 0
- f_k0f
- Modified Bessel of the second kind of order 0
- f_k1
- Modified Bessel of the second kind of order 1
- f_k1e
- Modified exponentially scaled Bessel of the second kind of order 1
- f_k1ef
- Modified exponentially scaled Bessel of the second kind of order 1
- f_k1f
- Modified Bessel of the second kind of order 1
- f_k2f
- Modified Bessel of the second kind of order 2
- f_
lgamma - Computes log(gamma(x))
- f_
lgamma_ r - Computes log(gamma(x))
- f_
lgamma_ rf - Computes log(gamma(x))
- f_
lgammaf - Computes log(gamma(x))
- f_
lnbeta - Computes log(beta(x)) function
- f_
lnbetaf - Computes log(beta(x)) function
- f_log
- Natural logarithm
- f_log2
- Log2(x)
- f_log1p
- Computes log(x+1)
- f_
log1pf - Computes log(x+1)
- f_
log1pmx - Computes log(1+x) - x
- f_
log1pmxf - Computes log(1+x) - x
- f_log2f
- Logarithm of base 2
- f_
log2p1 - Computes log2(x+1)
- f_
log2p1f - Computes log2(x+1)
- f_log10
- Logarithm of base 10
- f_
log10f - Logarithm of base 10
- f_
log10p1 - Computes log10(x+1)
- f_
log10p1f - Computes log10(x+1)
- f_logf
- Natural logarithm
- f_
logistic - Logistic function
- f_
logisticf - Logistic function
- f_logit
- Inverse logistic function
- f_
logitf - Inverse logistic function
- f_pow
- Power function
- f_powf
- Power function
- f_powm1
- Computes x^y - 1
- f_
powm1f - Computes x^y - 1
- f_rcbrt
- Computes 1/cbrt(x)
- f_
rcbrtf - Computes 1/cbrt(x)
- f_rerf
- Computes 1/erf(x)
- f_rerff
- Computes 1/erf(x)
- f_rsqrt
- Computes 1/sqrt(x)
- f_
rsqrtf - Computes 1/sqrt(x)
- f_sec
- Secant for double precision
- f_secf
- Computes secant ( 1 / cos(x) )
- f_sin
- Sine for double precision
- f_sinc
- Computes sinc(x)
- f_sincf
- Computes sinc(x)
- f_
sincos - Sine and cosine for double precision
- f_
sincosf - Sine and cosine
- f_
sincospi - Computes sin(PIx) and cos(PIx)
- f_
sincospif - Computes sin(x) and cos(x) at the same time
- f_
sincpi - Computes sin(PI*x)/(PI*x)
- f_
sincpif - Computes sin(PI*x)/(PI*x)
- f_sinf
- Sine function
- f_sinh
- Hyperbolic sine function
- f_sinhf
- Huperbolic sine function
- f_sinmx
- Computes sin(x) - x
- f_
sinmxf - Computes sin(x) - x
- f_sinpi
- Computes sin(PI*x)
- f_
sinpif - Computes sin(PI*x)
- f_
sqrt1pm1 - Computes sqrt(1+x) - 1
- f_
sqrt1pm1f - Computes sqrt(1+x) - 1
- f_tan
- Tangent in double precision
- f_tanf
- Computes tan
- f_tanh
- Hyperbolic tan
- f_tanhf
- Hyperbolic tangent
- f_tanpi
- Computes tan(PI*x)
- f_
tanpif - Computes tan(PI*x)
- f_
tgamma - Computes gamma(x)
- f_
tgammaf - True gamma function
- f_
trigamma - Computes the trigamma function ψ₁(x).
- f_
trigammaf - Computes the trigamma function ψ₁(x).
- f_y0
- Bessel of the second kind of order 0 (Y0)
- f_y0f
- Bessel of the second kind of order 0 (Y0)
- f_y1
- Bessel of the second kind of order 1 ( Y1 )
- f_y1f
- Bessel of the second kind of order 1 (Y1)
- floor
- Floors value
- floorf
- Round to integer towards minus infinity
- log
- Log for given value for const context. This is simplified version just to make a good approximation on const context.
- logf
- Log for given value for const context. This is simplified version just to make a good approximation on const context.
- pow
- Pow for given value for const context. This is simplified version just to make a good approximation on const context.
- powf
- Power function for given value for const context. This is simplified version just to make a good approximation on const context.
- round
- round_
ties_ even - roundf
- roundf_
ties_ even - sqrtf
- Computes Square root. Most of CPU have built-in instruction with higher precision, prefer use this only for const contexts.
- trunc
- truncf