pxfm/tangent/tanf.rs
1/*
2 * // Copyright (c) Radzivon Bartoshyk 6/2025. All rights reserved.
3 * //
4 * // Redistribution and use in source and binary forms, with or without modification,
5 * // are permitted provided that the following conditions are met:
6 * //
7 * // 1. Redistributions of source code must retain the above copyright notice, this
8 * // list of conditions and the following disclaimer.
9 * //
10 * // 2. Redistributions in binary form must reproduce the above copyright notice,
11 * // this list of conditions and the following disclaimer in the documentation
12 * // and/or other materials provided with the distribution.
13 * //
14 * // 3. Neither the name of the copyright holder nor the names of its
15 * // contributors may be used to endorse or promote products derived from
16 * // this software without specific prior written permission.
17 * //
18 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29use crate::common::f_fmla;
30use crate::polyeval::f_polyeval5;
31use crate::tangent::evalf::tanf_eval;
32
33/// Computes tan
34///
35/// Max found ULP 0.4999999
36#[inline]
37pub fn f_tanf(x: f32) -> f32 {
38 let x_abs = x.to_bits() & 0x7fff_ffffu32;
39 let xd = x as f64;
40
41 // |x| < pi/32
42 if x_abs <= 0x3dc9_0fdbu32 {
43 // |x| < 0.000244141
44 if x_abs < 0x3980_0000u32 {
45 if x_abs == 0 {
46 return x;
47 }
48
49 // When |x| < 2^-12, the relative error of the approximation tan(x) ~ x
50 // is:
51 // |tan(x) - x| / |tan(x)| < |x^3| / (3|x|)
52 // = x^2 / 3
53 // < 2^-25
54 // < epsilon(1)/2.
55 #[cfg(any(
56 all(
57 any(target_arch = "x86", target_arch = "x86_64"),
58 target_feature = "fma"
59 ),
60 all(target_arch = "aarch64", target_feature = "neon")
61 ))]
62 {
63 use crate::common::f_fmlaf;
64 return f_fmlaf(x, f32::from_bits(0xb3000000), x);
65 }
66 #[cfg(not(any(
67 all(
68 any(target_arch = "x86", target_arch = "x86_64"),
69 target_feature = "fma"
70 ),
71 all(target_arch = "aarch64", target_feature = "neon")
72 )))]
73 {
74 return f_fmla(xd, f64::from_bits(0xbe60000000000000), xd) as f32;
75 }
76 }
77
78 let xsqr = xd * xd;
79
80 /*
81 Generated by Sollya:
82 f_tan = tan(x)/x;
83 Q = fpminimax(f_tan, [|0, 2, 4, 6, 8|], [|1, D...|], [0, pi/32]);
84
85 See ./notes/tanf_at_zero.sollya
86 */
87 let p = f_polyeval5(
88 xsqr,
89 f64::from_bits(0x3ff0000000000000),
90 f64::from_bits(0x3fd555555553d022),
91 f64::from_bits(0x3fc111111ce442c1),
92 f64::from_bits(0x3faba180a6bbdecd),
93 f64::from_bits(0x3f969c0a88a0b71f),
94 );
95 return (xd * p) as f32;
96 }
97
98 if x_abs >= 0x7f80_0000u32 {
99 return x + f32::NAN;
100 }
101
102 // For |x| >= pi/32, we use the definition of tan(x) function:
103 // tan(a+b) = (tan(a) + tan(b)) / (1 - tan(a)tan(b))
104 // tanf_eval returns:
105 // - rs.tan_y = tan(pi/32 * y) -> tangent of the remainder
106 // - rs.tan_k = tan(pi/32 * k) -> tan of the main angle multiple
107 let rs = tanf_eval(xd, x_abs);
108
109 // Then computing tan through identities
110 // num = tan(k*pi/32) + tan(y*pi/32)
111 let num = rs.tan_y + rs.tan_k;
112 // den = 1 - tan(k*pi/32) * tan(y*pi/32)
113 let den = f_fmla(rs.tan_y, -rs.tan_k, 1.);
114 (num / den) as f32
115}
116
117#[cfg(test)]
118mod tests {
119 use super::*;
120
121 #[test]
122 fn f_tanf_test() {
123 assert_eq!(f_tanf(0.0), 0.0);
124 assert_eq!(f_tanf(1.0), 1.5574077);
125 assert_eq!(f_tanf(-1.0), -1.5574077);
126 assert_eq!(f_tanf(10.0), 0.64836085);
127 assert_eq!(f_tanf(-10.0), -0.64836085);
128 }
129}