pxfm/tangent/evalf.rs
1/*
2 * // Copyright (c) Radzivon Bartoshyk 9/2025. All rights reserved.
3 * //
4 * // Redistribution and use in source and binary forms, with or without modification,
5 * // are permitted provided that the following conditions are met:
6 * //
7 * // 1. Redistributions of source code must retain the above copyright notice, this
8 * // list of conditions and the following disclaimer.
9 * //
10 * // 2. Redistributions in binary form must reproduce the above copyright notice,
11 * // this list of conditions and the following disclaimer in the documentation
12 * // and/or other materials provided with the distribution.
13 * //
14 * // 3. Neither the name of the copyright holder nor the names of its
15 * // contributors may be used to endorse or promote products derived from
16 * // this software without specific prior written permission.
17 * //
18 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29use crate::polyeval::f_polyeval4;
30use crate::sin_cosf::ArgumentReducer;
31
32// Generated in SageMath:
33// print("[")
34// for k in range(64):
35// k = RealField(150)(k) * RealField(150).pi() / RealField(150)(32)
36// print(double_to_hex(k.tan()) + ",")
37// print("];")
38pub(crate) static TAN_K_PI_OVER32: [u64; 64] = [
39 0x0000000000000000,
40 0x3fb936bb8c5b2da2,
41 0x3fc975f5e0553158,
42 0x3fd36a08355c63dc,
43 0x3fda827999fcef32,
44 0x3fe11ab7190834ec,
45 0x3fe561b82ab7f990,
46 0x3fea43002ae42850,
47 0x3ff0000000000000,
48 0x3ff37efd8d87607e,
49 0x3ff7f218e25a7461,
50 0x3ffdef13b73c1406,
51 0x4003504f333f9de6,
52 0x400a5f59e90600dd,
53 0x40141bfee2424771,
54 0x40244e6c595afdcc,
55 0xc950457bf6be49c7,
56 0xc0244e6c595afdcc,
57 0xc0141bfee2424771,
58 0xc00a5f59e90600dd,
59 0xc003504f333f9de6,
60 0xbffdef13b73c1406,
61 0xbff7f218e25a7461,
62 0xbff37efd8d87607e,
63 0xbff0000000000000,
64 0xbfea43002ae42850,
65 0xbfe561b82ab7f990,
66 0xbfe11ab7190834ec,
67 0xbfda827999fcef32,
68 0xbfd36a08355c63dc,
69 0xbfc975f5e0553158,
70 0xbfb936bb8c5b2da2,
71 0x369f77598338bfdf,
72 0x3fb936bb8c5b2da2,
73 0x3fc975f5e0553158,
74 0x3fd36a08355c63dc,
75 0x3fda827999fcef32,
76 0x3fe11ab7190834ec,
77 0x3fe561b82ab7f990,
78 0x3fea43002ae42850,
79 0x3ff0000000000000,
80 0x3ff37efd8d87607e,
81 0x3ff7f218e25a7461,
82 0x3ffdef13b73c1406,
83 0x4003504f333f9de6,
84 0x400a5f59e90600dd,
85 0x40141bfee2424771,
86 0x40244e6c595afdcc,
87 0xc935b1fa9e530d0a,
88 0xc0244e6c595afdcc,
89 0xc0141bfee2424771,
90 0xc00a5f59e90600dd,
91 0xc003504f333f9de6,
92 0xbffdef13b73c1406,
93 0xbff7f218e25a7461,
94 0xbff37efd8d87607e,
95 0xbff0000000000000,
96 0xbfea43002ae42850,
97 0xbfe561b82ab7f990,
98 0xbfe11ab7190834ec,
99 0xbfda827999fcef32,
100 0xbfd36a08355c63dc,
101 0xbfc975f5e0553158,
102 0xbfb936bb8c5b2da2,
103];
104
105pub(crate) struct TanfEval {
106 pub(crate) tan_k: f64,
107 pub(crate) tan_y: f64,
108}
109
110#[inline]
111pub(crate) fn tanpif_eval(y: f64, k: i64) -> TanfEval {
112 let y_sqr = y * y;
113
114 // After range reduction, k = round(x * 32 / pi) and y = (x * 32 / pi) - k.
115 // So k is an integer and -0.5 <= y <= 0.5.
116
117 // picking minus sin and cos according to quadrant
118 let tan_k = f64::from_bits(TAN_K_PI_OVER32[((k as u64) & 63) as usize]);
119
120 // tan(x*pi/32) generated by Sollya:
121 // d = [0, 0.5];
122 // f_tan = tan(y*pi/32)/y;
123 // Q = fpminimax(f_tan, [|0, 2, 4, 6|], [|D...|], d, relative, floating);
124 // See ./notes/tanpif.sollya
125 let tan_y = f_polyeval4(
126 y_sqr,
127 f64::from_bits(0x3fb921fb54442cef),
128 f64::from_bits(0x3f34abbce63a363e),
129 f64::from_bits(0x3eb466baced705e8),
130 f64::from_bits(0x3e346a33cde88184),
131 ) * y;
132 TanfEval { tan_y, tan_k }
133}
134
135#[inline]
136pub(crate) fn tanf_eval(x: f64, x_abs: u32) -> TanfEval {
137 let (y, k) = ArgumentReducer { x, x_abs }.reduce();
138 let y_sqr = y * y;
139
140 // After range reduction, k = round(x * 32 / pi) and y = (x * 32 / pi) - k.
141 // So k is an integer and -0.5 <= y <= 0.5.
142
143 // picking minus sin and cos according to quadrant
144 let tan_k = f64::from_bits(TAN_K_PI_OVER32[(k & 63) as usize]);
145
146 // tan(x*pi/32) generated by Sollya:
147 // d = [0, 0.5];
148 // f_tan = tan(x*pi/32)/x;
149 // Q = fpminimax(f_tan, [|0, 2, 4, 6|], [|D...|], d);
150 // See ./notes/tanf.sollya
151 let tan_y = f_polyeval4(
152 y_sqr,
153 f64::from_bits(0x3fb921fb54442cef),
154 f64::from_bits(0x3f34abbce63a363e),
155 f64::from_bits(0x3eb466baced705e8),
156 f64::from_bits(0x3e346a33cde88184),
157 ) * y;
158 TanfEval { tan_y, tan_k }
159}