pxfm/tangent/cotf.rs
1/*
2 * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved.
3 * //
4 * // Redistribution and use in source and binary forms, with or without modification,
5 * // are permitted provided that the following conditions are met:
6 * //
7 * // 1. Redistributions of source code must retain the above copyright notice, this
8 * // list of conditions and the following disclaimer.
9 * //
10 * // 2. Redistributions in binary form must reproduce the above copyright notice,
11 * // this list of conditions and the following disclaimer in the documentation
12 * // and/or other materials provided with the distribution.
13 * //
14 * // 3. Neither the name of the copyright holder nor the names of its
15 * // contributors may be used to endorse or promote products derived from
16 * // this software without specific prior written permission.
17 * //
18 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29use crate::common::f_fmla;
30use crate::polyeval::f_polyeval5;
31
32/// Computes cotangent
33///
34/// Max found ULP 0.4999999
35#[inline]
36pub fn f_cotf(x: f32) -> f32 {
37 let x_abs = x.to_bits() & 0x7fff_ffffu32;
38 let xd = x as f64;
39
40 // |x| < pi/32
41 if x_abs <= 0x3dc9_0fdbu32 {
42 // |x| < 0.000244141
43 if x_abs < 0x3980_0000u32 {
44 if x_abs == 0 {
45 return 1. / x;
46 }
47
48 // When |x| < 2^-12, the relative error of the approximation cot(x)
49 // is:
50 let ddx = x as f64;
51 let dx = 1. / ddx;
52 // taylor order 3
53 return f_fmla(ddx, f64::from_bits(0xbfd5555555555555), dx) as f32;
54 }
55
56 let xsqr = xd * xd;
57
58 /*
59 Generated by Sollya:
60 f_cotf = x/tan(x);
61 Q = fpminimax(f_cotf, [|0, 2, 4, 6, 8|], [|1, D...|], [0, pi/32]);
62
63 See ./notes/cotf.sollya
64 */
65 let p = f_polyeval5(
66 xsqr,
67 f64::from_bits(0x3ff0000000000000),
68 f64::from_bits(0xbfd5555555555466),
69 f64::from_bits(0xbf96c16c16fb8937),
70 f64::from_bits(0xbf6156688756cd43),
71 f64::from_bits(0xbf2bce669d7cd742),
72 );
73 return (p / xd) as f32;
74 }
75
76 if x_abs >= 0x7f80_0000u32 {
77 return x + f32::NAN;
78 }
79
80 // For |x| >= pi/32, we use the definition of cot(x) function:
81 // cot(a+b) = (1 - tan(a)tan(b)) / (tan(a) + tan(b))
82 // tanf_eval returns:
83 // - rs.tan_y = tan(pi/32 * y) -> tangent of the remainder
84 // - rs.tan_k = tan(pi/32 * k) -> tan of the main angle multiple
85 let rs = crate::tangent::evalf::tanf_eval(xd, x_abs);
86
87 // Then computing tan through identities
88 // num = tan(k*pi/32) + tan(y*pi/32)
89 let num = rs.tan_y + rs.tan_k;
90 // den = 1 - tan(k*pi/32) * tan(y*pi/32)
91 let den = f_fmla(rs.tan_y, -rs.tan_k, 1.);
92 (den / num) as f32
93}
94
95#[cfg(test)]
96mod tests {
97 use super::*;
98
99 #[test]
100 fn cotf_test() {
101 assert_eq!(f_cotf(0.0010348097), 966.36084);
102 assert_eq!(f_cotf(0.0020286469), 492.93872);
103 assert_eq!(f_cotf(-0.0020286469), -492.93872);
104 assert_eq!(f_cotf(1.0020286469), 0.63923126);
105 assert_eq!(f_cotf(-1.0020286469), -0.63923126);
106 assert_eq!(f_cotf(0.0), f32::INFINITY);
107 assert_eq!(f_cotf(-0.0), f32::NEG_INFINITY);
108 assert!(f_cotf(f32::INFINITY).is_nan());
109 assert!(f_cotf(f32::NEG_INFINITY).is_nan());
110 assert!(f_cotf(f32::NAN).is_nan());
111 }
112}