1use crate::common::f_fmla;
30use crate::double_double::DoubleDouble;
31use crate::dyadic_float::DyadicFloat128;
32use crate::sin::{get_sin_k_rational, range_reduction_small, sincos_eval};
33use crate::sin_table::SIN_K_PI_OVER_128;
34use crate::sincos_dyadic::{range_reduction_small_f128, sincos_eval_dyadic};
35use crate::sincos_reduce::LargeArgumentReduction;
36
37#[cold]
38#[inline(never)]
39fn sinc_refine(argument_reduction: &mut LargeArgumentReduction, x: f64, x_e: u64, k: u64) -> f64 {
40 const EXP_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64;
41 let u_f128 = if x_e < EXP_BIAS + 16 {
42 range_reduction_small_f128(x)
43 } else {
44 argument_reduction.accurate()
45 };
46
47 let sin_cos = sincos_eval_dyadic(&u_f128);
48
49 let sin_k_f128 = get_sin_k_rational(k);
51 let cos_k_f128 = get_sin_k_rational(k.wrapping_add(64));
52
53 let r = (sin_k_f128 * sin_cos.v_cos) + (cos_k_f128 * sin_cos.v_sin);
56
57 let reciprocal = DyadicFloat128::accurate_reciprocal(x);
58 (r * reciprocal).fast_as_f64()
59}
60
61pub fn f_sinc(x: f64) -> f64 {
65 if !x.is_finite() {
66 return f64::NAN;
67 }
68
69 let x_abs = f64::from_bits(x.to_bits() & 0x7fff_ffff_ffff_ffff);
70 if x_abs.to_bits() == 0 {
71 return 1.0;
72 }
73
74 let x_e = (x.to_bits() >> 52) & 0x7ff;
75 const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64;
76
77 let y: DoubleDouble;
78 let k;
79
80 let mut argument_reduction = LargeArgumentReduction::default();
81
82 if x_e < E_BIAS + 16 {
84 if x_e < E_BIAS - 26 {
86 if x == 0.0 {
88 return x;
89 }
90
91 const M_ONE_OVER_6: f64 = f64::from_bits(0xbfc5555555555555);
93 return f_fmla(x, x * M_ONE_OVER_6, 1.);
94 }
95
96 (y, k) = range_reduction_small(x);
98 } else {
99 if x_e > 2 * E_BIAS {
101 return x + f64::NAN;
103 }
104
105 (k, y) = argument_reduction.reduce(x);
107 }
108
109 let r_sincos = sincos_eval(y);
110
111 let sk = SIN_K_PI_OVER_128[(k & 255) as usize];
114 let ck = SIN_K_PI_OVER_128[((k.wrapping_add(64)) & 255) as usize];
115
116 let sin_k = DoubleDouble::from_bit_pair(sk);
117 let cos_k = DoubleDouble::from_bit_pair(ck);
118
119 let sin_k_cos_y = DoubleDouble::quick_mult(r_sincos.v_cos, sin_k);
120 let cos_k_sin_y = DoubleDouble::quick_mult(r_sincos.v_sin, cos_k);
121
122 let mut rr = DoubleDouble::from_exact_add(sin_k_cos_y.hi, cos_k_sin_y.hi);
124 rr.lo += sin_k_cos_y.lo + cos_k_sin_y.lo;
125
126 rr = DoubleDouble::from_exact_add(rr.hi, rr.lo);
127 rr = DoubleDouble::div_dd_f64(rr, x);
128
129 let rlp = rr.lo + r_sincos.err;
130 let rlm = rr.lo - r_sincos.err;
131
132 let r_upper = rr.hi + rlp; let r_lower = rr.hi + rlm; if r_upper == r_lower {
137 return r_upper;
138 }
139 sinc_refine(&mut argument_reduction, x, x_e, k)
140}
141
142#[cfg(test)]
143mod tests {
144 use super::*;
145 #[test]
146 fn test_sinc() {
147 assert_eq!(f_sinc(0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004764135737289025), 1.);
148 assert_eq!(f_sinc(0.1), 0.9983341664682815);
149 assert_eq!(f_sinc(0.9), 0.870363232919426);
150 assert_eq!(f_sinc(-0.1), 0.9983341664682815);
151 assert_eq!(f_sinc(-0.9), 0.870363232919426);
152 assert!(f_sinc(f64::INFINITY).is_nan());
153 assert!(f_sinc(f64::NEG_INFINITY).is_nan());
154 assert!(f_sinc(f64::NAN).is_nan());
155 }
156}