pxfm/sin_cosf/sincpif.rs
1/*
2 * // Copyright (c) Radzivon Bartoshyk 9/2025. All rights reserved.
3 * //
4 * // Redistribution and use in source and binary forms, with or without modification,
5 * // are permitted provided that the following conditions are met:
6 * //
7 * // 1. Redistributions of source code must retain the above copyright notice, this
8 * // list of conditions and the following disclaimer.
9 * //
10 * // 2. Redistributions in binary form must reproduce the above copyright notice,
11 * // this list of conditions and the following disclaimer in the documentation
12 * // and/or other materials provided with the distribution.
13 * //
14 * // 3. Neither the name of the copyright holder nor the names of its
15 * // contributors may be used to endorse or promote products derived from
16 * // this software without specific prior written permission.
17 * //
18 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29use crate::common::{f_fmla, is_integerf};
30use crate::polyeval::f_polyeval5;
31use crate::sin_cosf::sincosf_eval::sincospif_eval;
32
33/// Computes sin(PI\*x)/(PI\*x)
34///
35/// Produces normalized sinc.
36///
37/// ulp 0.5
38pub fn f_sincpif(x: f32) -> f32 {
39 let x_abs = x.to_bits() & 0x7fff_ffffu32;
40 let xd = x as f64;
41
42 if x_abs <= 0x3d80_0000u32 {
43 // |x| <= 1/16
44 if x_abs < 0x3580_2126u32 {
45 // |x| < 0.0000009546391
46 if x_abs == 0u32 {
47 // Signed zeros.
48 return 1.;
49 }
50
51 // Small values approximated with Taylor poly
52 // sincpi(x) ~ 1 - x^2*Pi^2/6 + O(x^4)
53 #[cfg(any(
54 all(
55 any(target_arch = "x86", target_arch = "x86_64"),
56 target_feature = "fma"
57 ),
58 all(target_arch = "aarch64", target_feature = "neon")
59 ))]
60 {
61 use crate::common::f_fmlaf;
62 const M_SQR_PI_OVER_6: f32 = f32::from_bits(0xbfd28d33);
63 return f_fmlaf(x, M_SQR_PI_OVER_6 * x, 1.);
64 }
65 #[cfg(not(any(
66 all(
67 any(target_arch = "x86", target_arch = "x86_64"),
68 target_feature = "fma"
69 ),
70 all(target_arch = "aarch64", target_feature = "neon")
71 )))]
72 {
73 const M_SQR_PI_OVER_6: f64 = f64::from_bits(0xbffa51a6625307d3);
74 let x2 = xd * xd;
75 let p = f_fmla(x2, M_SQR_PI_OVER_6, 1.);
76 return p as f32;
77 }
78 }
79
80 let xsqr = xd * xd;
81
82 // Generated by Sollya:
83 // d = [0, 1/16];
84 // f_sincpif = sin(y*pi)/(y*pi);
85 // Q = fpminimax(f_sincpif, [|0, 2, 4, 6, 8|], [|D...|], d, relative, floating);
86 // See ./notes/sincpif.sollya
87 let p = f_polyeval5(
88 xsqr,
89 f64::from_bits(0x3ff0000000000000),
90 f64::from_bits(0xbffa51a662530723),
91 f64::from_bits(0x3fe9f9cb401e8e85),
92 f64::from_bits(0xbfc86a8da89c9234),
93 f64::from_bits(0x3f9ac0a16798157e),
94 );
95 return p as f32;
96 }
97
98 // Numbers greater or equal to 2^23 are always integers or NaN
99 // integers are always 0
100 if x_abs >= 0x4b00_0000u32 || is_integerf(x) {
101 if x_abs >= 0x7f80_0000u32 {
102 return x + f32::NAN;
103 }
104 return if x.is_sign_negative() { -0. } else { 0. };
105 }
106
107 const PI: f64 = f64::from_bits(0x400921fb54442d18);
108 let rs = sincospif_eval(xd);
109 let sf = f_fmla(rs.sin_y, rs.cos_k, f_fmla(rs.cosm1_y, rs.sin_k, rs.sin_k));
110 (sf / (PI * xd)) as f32
111}
112
113#[cfg(test)]
114mod tests {
115 use super::*;
116
117 #[test]
118 fn test_sincpif_eval() {
119 assert_eq!(f_sincpif(1.0), 0.);
120 assert_eq!(f_sincpif(2.0), 0.);
121 assert_eq!(f_sincpif(3.0), 0.);
122 assert_eq!(f_sincpif(0.0543242), 0.99515265);
123 assert_eq!(f_sincpif(0.002134242), 0.9999925);
124 assert_eq!(f_sincpif(0.00000005421321), 1.0);
125 assert!(f_sincpif(f32::INFINITY).is_nan());
126 assert!(f_sincpif(f32::NEG_INFINITY).is_nan());
127 assert!(f_sincpif(f32::NAN).is_nan());
128 }
129}