1use crate::bessel::i0_exp;
30use crate::double_double::DoubleDouble;
31use crate::gamma::lgamma::lgamma_core;
32use crate::logs::fast_log_d_to_dd;
33
34pub fn f_gamma_p(a: f64, x: f64) -> f64 {
36 let aa = a.to_bits();
37 let ax = x.to_bits();
38
39 if aa >= 0x7ffu64 << 52 || aa == 0 || ax >= 0x7ffu64 << 52 || ax == 0 {
40 if (aa >> 63) != 0 || (ax >> 63) != 0 {
41 return f64::NAN;
43 }
44 if aa.wrapping_shl(1) == 0 {
45 return 1.0;
47 }
48 if ax.wrapping_shl(1) == 0 {
49 return 0.;
51 }
52 if a.is_infinite() {
53 return f64::INFINITY;
55 }
56 if x.is_infinite() {
57 return f64::INFINITY;
59 }
60 return a + f64::NAN;
61 }
62
63 let big = 4503599627370496.0;
64 let big_inv = 2.22044604925031308085e-16;
65
66 const EPS: f64 = f64::EPSILON;
67
68 let da = a;
69 let dx = x;
70
71 let r = DoubleDouble::full_add_f64(-lgamma_core(a).0, -dx);
72 let ax = DoubleDouble::mul_f64_add(fast_log_d_to_dd(x), da, r).to_f64();
73
74 if ax <= -709.78271289338399 {
75 if a < x {
76 return 1.0;
77 }
78 return 0.0;
79 }
80 if ax >= 709.783 {
81 return f64::INFINITY;
82 }
83
84 if x <= 1.0 || x <= a {
85 let mut r2 = DoubleDouble::new(0., da);
86 let mut c2 = DoubleDouble::new(0., 1.0);
87 let mut ans2 = DoubleDouble::new(0., 1.0);
88 let v_e = i0_exp(ax);
89 for _ in 0..200 {
90 r2 = DoubleDouble::full_add_f64(r2, 1.0);
91 c2 = DoubleDouble::quick_mult(DoubleDouble::from_f64_div_dd(dx, r2), c2);
92 c2 = DoubleDouble::from_exact_add(c2.hi, c2.lo);
93 ans2 = DoubleDouble::add(ans2, c2);
94
95 if c2.hi / ans2.hi <= EPS {
96 break;
97 }
98 }
99 let v0 = DoubleDouble::quick_mult(v_e, ans2);
100 return DoubleDouble::div_dd_f64(v0, da).to_f64();
101 }
102
103 let v_e = i0_exp(ax);
104
105 let mut y = 1.0 - da;
106 let mut z = dx + y + 1.0;
107 let mut c = 0i32;
108
109 let mut p3 = 1.0;
110 let mut q3 = dx;
111 let mut p2 = dx + 1.0;
112 let mut q2 = z * dx;
113 let mut ans = p2 / q2;
114
115 for _ in 0..200 {
116 y += 1.0;
117 z += 2.0;
118 c += 1;
119 let yc = y * c as f64;
120
121 let p = p2 * z - p3 * yc;
122 let q = q2 * z - q3 * yc;
123
124 p3 = p2;
125 p2 = p;
126 q3 = q2;
127 q2 = q;
128
129 if p.abs() > big {
130 p3 *= big_inv;
131 p2 *= big_inv;
132 q3 *= big_inv;
133 q2 *= big_inv;
134 }
135
136 if q != 0.0 {
137 let nextans = p / q;
138 let error = ((ans - nextans) / nextans).abs();
139 ans = nextans;
140
141 if error <= EPS {
142 break;
143 }
144 }
145 }
146
147 DoubleDouble::mul_f64_add_f64(-v_e, ans, 1.0).to_f64()
148}
149
150#[cfg(test)]
151mod tests {
152 use super::*;
153 #[test]
154 fn test_f_beta_pf() {
155 assert_eq!(f_gamma_p(1., f64::INFINITY), f64::INFINITY);
156 assert_eq!(f_gamma_p(23.421, 41.), 0.9988694746117834);
157 assert_eq!(f_gamma_p(0.764, 0.432123), 0.47752996395412817);
158 assert_eq!(f_gamma_p(0.421, 1.), 0.8727868618082306);
159 assert!(f_gamma_p(-1., 12.).is_nan());
160 assert!(f_gamma_p(1., -12.).is_nan());
161 assert!(f_gamma_p(f64::NAN, 12.).is_nan());
162 assert!(f_gamma_p(1., f64::NAN).is_nan());
163 assert_eq!(f_gamma_p(f64::INFINITY, f64::INFINITY), f64::INFINITY);
164 assert_eq!(f_gamma_p(f64::INFINITY, 5.32), f64::INFINITY);
165 }
166}