pxfm/gamma/
digammaf.rs

1/*
2 * // Copyright (c) Radzivon Bartoshyk 8/2025. All rights reserved.
3 * //
4 * // Redistribution and use in source and binary forms, with or without modification,
5 * // are permitted provided that the following conditions are met:
6 * //
7 * // 1.  Redistributions of source code must retain the above copyright notice, this
8 * // list of conditions and the following disclaimer.
9 * //
10 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11 * // this list of conditions and the following disclaimer in the documentation
12 * // and/or other materials provided with the distribution.
13 * //
14 * // 3.  Neither the name of the copyright holder nor the names of its
15 * // contributors may be used to endorse or promote products derived from
16 * // this software without specific prior written permission.
17 * //
18 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29use crate::common::{f_fmla, is_integerf};
30use crate::logs::simple_fast_log;
31use crate::polyeval::{
32    f_estrin_polyeval7, f_estrin_polyeval8, f_estrin_polyeval9, f_polyeval4, f_polyeval6,
33    f_polyeval10,
34};
35use crate::tangent::cotpif_core;
36
37#[inline]
38fn approx_digamma(x: f64) -> f64 {
39    if x <= 1. {
40        // Generated in Wolfram Mathematica:
41        // <<FunctionApproximations`
42        // ClearAll["Global`*"]
43        // f[x_]:=PolyGamma[x + 1]
44        // {err0,approx, err1}=MiniMaxApproximation[f[z],{z,{-0.99999999,0},9,8},WorkingPrecision->75,MaxIterations->100]
45        // num=Numerator[approx];
46        // den=Denominator[approx];
47        // poly=num;
48        // coeffs=CoefficientList[poly,z];
49        // TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
50        // poly=den;
51        // coeffs=CoefficientList[poly,z];
52        // TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
53        let p_num = f_polyeval10(
54            x,
55            f64::from_bits(0xbfe2788cfc6fb619),
56            f64::from_bits(0x3fca347925788707),
57            f64::from_bits(0x3ff887e0f068df69),
58            f64::from_bits(0x3ff543446198b4d2),
59            f64::from_bits(0x3fe03e4455fbad95),
60            f64::from_bits(0x3fb994be8389e4f6),
61            f64::from_bits(0x3f84eb98b830c9b1),
62            f64::from_bits(0x3f4025193ac4ad97),
63            f64::from_bits(0x3ee18c1d683d866a),
64            f64::from_bits(0x3e457cb5b4a07c95),
65        );
66        let p_den = f_estrin_polyeval9(
67            x,
68            f64::from_bits(0x3ff0000000000000),
69            f64::from_bits(0x4003f5f42d95aca8),
70            f64::from_bits(0x4002f96e541d0513),
71            f64::from_bits(0x3ff22c34843313fa),
72            f64::from_bits(0x3fd33574180109bf),
73            f64::from_bits(0x3fa6c07b99ebb277),
74            f64::from_bits(0x3f6cdd7b8fa68926),
75            f64::from_bits(0x3f212b74d39e287f),
76            f64::from_bits(0x3ebabd247f366583),
77        );
78        return p_num / p_den - 1. / x;
79    } else if x < 1.461632144 {
80        // exception
81        if x == 1.4616321325302124 {
82            return -1.2036052e-8;
83        }
84        // Generated in Wolfram Mathematica:
85        // <<FunctionApproximations`
86        // ClearAll["Global`*"]
87        // f[x_]:=PolyGamma[x+1]
88        // {err0,approx,err1}=MiniMaxApproximation[f[z],{z,{0,0.461632144},8,8},WorkingPrecision->75,MaxIterations->100]
89        // num=Numerator[approx];
90        // den=Denominator[approx];
91        // poly=num;
92        // coeffs=CoefficientList[poly,z];
93        // TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
94        // poly=den;
95        // coeffs=CoefficientList[poly,z];
96        // TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
97        let p_num = f_estrin_polyeval9(
98            x,
99            f64::from_bits(0xbfe2788cfc6fb619),
100            f64::from_bits(0x3fd0ad221e8c3b8b),
101            f64::from_bits(0x3ff813be4dee2e90),
102            f64::from_bits(0x3ff2f64cbfa7d1a4),
103            f64::from_bits(0x3fd9a8c4798f426c),
104            f64::from_bits(0x3fb111a34898f6bf),
105            f64::from_bits(0x3f75dd3efac1e579),
106            f64::from_bits(0x3f272596b2582f0d),
107            f64::from_bits(0x3eb9b074f4ca6263),
108        );
109        let p_den = f_estrin_polyeval9(
110            x,
111            f64::from_bits(0x3ff0000000000000),
112            f64::from_bits(0x40032fd3a1fe3a25),
113            f64::from_bits(0x40012969bcd7fef3),
114            f64::from_bits(0x3fee1a267ee7a97a),
115            f64::from_bits(0x3fcc1522178a69a6),
116            f64::from_bits(0x3f9bd89421334af0),
117            f64::from_bits(0x3f5b40bc3203df4c),
118            f64::from_bits(0x3f05ac6be0b79fac),
119            f64::from_bits(0x3e9047c3d8071f18),
120        );
121        return p_num / p_den - 1. / x;
122    } else if x <= 2. {
123        // Generated in Wolfram Mathematica:
124        // <<FunctionApproximations`
125        // ClearAll["Global`*"]
126        // f[x_]:=PolyGamma[x+1]
127        // {err0,approx,err1}=MiniMaxApproximation[f[z],{z,{0.461632144,1},7,6},WorkingPrecision->75,MaxIterations->100]
128        // num=Numerator[approx];
129        // den=Denominator[approx];
130        // poly=num;
131        // coeffs=CoefficientList[poly,z];
132        // TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
133        // poly=den;
134        // coeffs=CoefficientList[poly,z];
135        // TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
136        let p_num = f_estrin_polyeval8(
137            x,
138            f64::from_bits(0xbfe2788cfc6fb613),
139            f64::from_bits(0x3fd690553caa1c6b),
140            f64::from_bits(0x3ff721cf4d9e008f),
141            f64::from_bits(0x3fee9f4096f34b09),
142            f64::from_bits(0x3fd055e88830fc71),
143            f64::from_bits(0x3f9e66bceee16960),
144            f64::from_bits(0x3f55d436778b3403),
145            f64::from_bits(0x3eeef6bc214819b3),
146        );
147        let p_den = f_estrin_polyeval8(
148            x,
149            f64::from_bits(0x3ff0000000000000),
150            f64::from_bits(0x4001e96eaab05729),
151            f64::from_bits(0x3ffcb1aa289077da),
152            f64::from_bits(0x3fe5499e89b757b6),
153            f64::from_bits(0x3fbee531a912bca9),
154            f64::from_bits(0x3f84d46f2121ceb7),
155            f64::from_bits(0x3f35abd7eb7440e6),
156            f64::from_bits(0x3ec43bf7c110aad1),
157        );
158        return p_num / p_den - 1. / x;
159    } else if x <= 3. {
160        // Generated in Wolfram Mathematica:
161        // <<FunctionApproximations`
162        // ClearAll["Global`*"]
163        // f[x_]:=PolyGamma[x+1]
164        // {err0,approx}=MiniMaxApproximation[f[z],{z,{1,2},7,6},WorkingPrecision->75,MaxIterations->100]
165        // num=Numerator[approx][[1]];
166        // den=Denominator[approx][[1]];
167        // poly=num;
168        // coeffs=CoefficientList[poly,z];
169        // TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
170        // poly=den;
171        // coeffs=CoefficientList[poly,z];
172        // TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
173        let p_num = f_estrin_polyeval8(
174            x,
175            f64::from_bits(0xbfe2788cfc63695f),
176            f64::from_bits(0x3fdb63791eb688ea),
177            f64::from_bits(0x3ff625ed84968583),
178            f64::from_bits(0x3fe900ea36e59e02),
179            f64::from_bits(0x3fc5319409f4fec6),
180            f64::from_bits(0x3f8b6e7cacff2a59),
181            f64::from_bits(0x3f34a7e591bf2af3),
182            f64::from_bits(0x3e9c323866d138db),
183        );
184        let p_den = f_estrin_polyeval7(
185            x,
186            f64::from_bits(0x3ff0000000000000),
187            f64::from_bits(0x4000ddf448e34181),
188            f64::from_bits(0x3ff87188f2414f79),
189            f64::from_bits(0x3fdeff74d18f811a),
190            f64::from_bits(0x3fb1a0cddeb3a320),
191            f64::from_bits(0x3f701050c1344800),
192            f64::from_bits(0x3f10480a4ea8cf57),
193        );
194        return p_num / p_den - 1. / x;
195    } else if x <= 8. {
196        // Generated in Wolfram Mathematica:
197        // <<FunctionApproximations`
198        // ClearAll["Global`*"]
199        // f[x_]:=PolyGamma[x + 1]
200        // {err0,approx}=MiniMaxApproximation[f[z],{z,{2,7},7,7},WorkingPrecision->75,MaxIterations->100]
201        // num=Numerator[approx][[1]];
202        // den=Denominator[approx][[1]];
203        // poly=num;
204        // coeffs=CoefficientList[poly,z];
205        // TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
206        // poly=den;
207        // coeffs=CoefficientList[poly,z];
208        // TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
209        let p_num = f_estrin_polyeval8(
210            x,
211            f64::from_bits(0xbfe2788c3725fd5e),
212            f64::from_bits(0x3fde39f54e5a651a),
213            f64::from_bits(0x3ff56983b839b94f),
214            f64::from_bits(0x3fe60d6118d8fc08),
215            f64::from_bits(0x3fc0e889ace69a30),
216            f64::from_bits(0x3f844e10e399bd93),
217            f64::from_bits(0x3f3099741afda7cb),
218            f64::from_bits(0x3eb74a15144af8e9),
219        );
220        let p_den = f_estrin_polyeval8(
221            x,
222            f64::from_bits(0x3ff0000000000000),
223            f64::from_bits(0x4000409ed08c0553),
224            f64::from_bits(0x3ff63746cb6183e3),
225            f64::from_bits(0x3fda1196b1a75351),
226            f64::from_bits(0x3fab4ba9fad2d187),
227            f64::from_bits(0x3f67de6e6987e3a3),
228            f64::from_bits(0x3f0c9d85ca31182e),
229            f64::from_bits(0x3e8b269f154c8f12),
230        );
231        return p_num / p_den - 1. / x;
232    } else if x <= 15. {
233        // Generated in Wolfram Mathematica:
234        // <<FunctionApproximations`
235        // ClearAll["Global`*"]
236        // f[x_]:=PolyGamma[x + 1]
237        // {err0,approx}=MiniMaxApproximation[f[z],{z,{7,14},7,7},WorkingPrecision->75,MaxIterations->100]
238        // num=Numerator[approx][[1]];
239        // den=Denominator[approx][[1]];
240        // poly=num;
241        // coeffs=CoefficientList[poly,z];
242        // TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
243        // poly=den;
244        // coeffs=CoefficientList[poly,z];
245        // TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
246        let p_num = f_estrin_polyeval8(
247            x,
248            f64::from_bits(0xbfe272e75f131710),
249            f64::from_bits(0x3fe53fce507de081),
250            f64::from_bits(0x3ff182957d4f961a),
251            f64::from_bits(0x3fd6d1652dea00e9),
252            f64::from_bits(0x3fa45e16488abe0f),
253            f64::from_bits(0x3f5a52a8f3f3663f),
254            f64::from_bits(0x3ef5b767554d208e),
255            f64::from_bits(0x3e6d2393b100353d),
256        );
257        let p_den = f_estrin_polyeval8(
258            x,
259            f64::from_bits(0x3ff0000000000000),
260            f64::from_bits(0x3ffb1f295c6e5fc5),
261            f64::from_bits(0x3feb88eb913eb117),
262            f64::from_bits(0x3fc570f3aed83ff7),
263            f64::from_bits(0x3f8afe819fdfa5a5),
264            f64::from_bits(0x3f3a2cec9041f361),
265            f64::from_bits(0x3ed0549335964bb9),
266            f64::from_bits(0x3e3ebdcb0002d63e),
267        );
268        return p_num / p_den - 1. / x;
269    }
270    // digamma asymptotic expansion
271    // digamma(x) ~ ln(z)+1/(2z)-sum_(n=1)^(infty)(Bernoulli(2n))/(2nz^(2n))
272    // Generated in SageMath:
273    // var('x')
274    //
275    // def bernoulli_terms(x, N):
276    //     S = 0
277    //     S += QQ(1)/QQ(2)/x
278    //     for k in range(1, N+1):
279    //         B = bernoulli(2*k)
280    //         term = (B / QQ(2*k))*x**(-2*k)
281    //         S += term
282    //     return S
283    //
284    // terms = bernoulli_terms(x, 5)
285    //
286    // coeffs = [RealField(150)(terms.coefficient(x, n)) for n in range(0, terms.degree(x)+1, 1)]
287    // for k in range(1, 13):
288    //     c = terms.coefficient(x, -k)  # coefficient of x^(-k)
289    //     if c == 0:
290    //         continue
291    //     print("f64::from_bits(" + double_to_hex(c) + "),")
292    let rcp = 1. / x;
293    let rcp_sqr = rcp * rcp;
294    let p = f_polyeval6(
295        rcp_sqr,
296        f64::from_bits(0x3fb5555555555555),
297        f64::from_bits(0xbf81111111111111),
298        f64::from_bits(0x3f70410410410410),
299        f64::from_bits(0xbf71111111111111),
300        f64::from_bits(0x3f7f07c1f07c1f08),
301        f64::from_bits(0xbf95995995995996),
302    );
303    let v_log = simple_fast_log(x);
304    v_log - f_fmla(rcp, f64::from_bits(0x3fe0000000000000), p * rcp_sqr)
305}
306
307/// Computes digamma(x)
308pub fn f_digammaf(x: f32) -> f32 {
309    let xb = x.to_bits();
310    // filter out exceptional cases
311    if xb >= 0xffu32 << 23 || xb == 0 {
312        if x.is_infinite() {
313            return if x.is_sign_negative() {
314                f32::NAN
315            } else {
316                f32::INFINITY
317            };
318        }
319        if x.is_nan() {
320            return f32::NAN;
321        }
322        if xb == 0 {
323            return f32::INFINITY;
324        }
325    }
326
327    let ax = x.to_bits() & 0x7fff_ffff;
328
329    if ax <= 0x32abcc77u32 {
330        // |x| < 2e-8
331        // digamma near where x -> 1 ~ Digamma[x] = -euler + O(x)
332        // considering identity Digamma[x+1] = Digamma[x] + 1/x,
333        // hence x < ulp(1) then x+1 ~= 1 that gives
334        // Digamma[x] = Digamma[x+1] - 1/x = -euler - 1/x
335        const EULER: f64 = f64::from_bits(0x3fe2788cfc6fb619);
336        return (-EULER - 1. / x as f64) as f32;
337    } else if ax <= 0x377ba882u32 {
338        // |x| <= 0.000015
339        // Laurent series of digamma(x)
340        // Generated by SageMath:
341        // from mpmath import mp
342        // mp.prec = 150
343        // R = RealField(150)
344        // var('x')
345        // def laurent_terms(x, N):
346        //     S = 0
347        //     S += -1/x - R(mp.euler)
348        //     S1 = 0
349        //     for k in range(1, N+1):
350        //         zet = R(mp.zeta(k + 1))
351        //         term = zet*(-x)**k
352        //         S1 += term
353        //     return S - S1
354        //
355        // terms = laurent_terms(x, 4)
356        //
357        // coeffs = [RealField(150)(terms.coefficient(x, n)) for n in range(0, terms.degree(x)+1, 1)]
358        // for k in range(1, 13):
359        //     c = terms.coefficient(x, k)  # coefficient of x^(-k)
360        //     if c == 0:
361        //         continue
362        //     print("f64::from_bits(" + double_to_hex(c) + "),")
363        const EULER: f64 = f64::from_bits(0x3fe2788cfc6fb619);
364        let dx = x as f64;
365        let start = -1. / dx;
366        let neg_dx = -dx;
367        let z = f_polyeval4(
368            neg_dx,
369            f64::from_bits(0x3ffa51a6625307d3),
370            f64::from_bits(0xbff33ba004f00621),
371            f64::from_bits(0x3ff151322ac7d848),
372            f64::from_bits(0xbff097418eca7cce),
373        );
374        let r = f_fmla(z, dx, -EULER) + start;
375        return r as f32;
376    }
377
378    let mut dx = x as f64;
379    let mut result: f64 = 0.;
380    if x < 0. {
381        // at negative integers it's inf
382        if is_integerf(x) {
383            return f32::NAN;
384        }
385
386        // reflection Gamma(1-x) + Gamma(x) = Pi/tan(PI*x)
387        const PI: f64 = f64::from_bits(0x400921fb54442d18);
388        let cot_x_angle = -dx;
389        dx = 1. - dx;
390        result = PI * cotpif_core(cot_x_angle);
391    }
392    let approx = approx_digamma(dx);
393    result += approx;
394    result as f32
395}
396
397#[cfg(test)]
398mod tests {
399    use super::*;
400
401    #[test]
402    fn test_digamma() {
403        assert_eq!(f_digammaf(-13.999000000012591), -996.9182);
404        assert_eq!(f_digammaf(15.3796425), 2.700182);
405        assert_eq!(f_digammaf(0.0005187988), -1928.1058);
406        assert_eq!(f_digammaf(0.0019531252), -512.574);
407        assert_eq!(f_digammaf(-96.353516), 6.1304626);
408        assert_eq!(f_digammaf(-31.06964), 17.582127);
409        assert_eq!(f_digammaf(-0.000000000000001191123), 839543830000000.);
410        assert_eq!(f_digammaf(f32::INFINITY), f32::INFINITY);
411        assert_eq!(f_digammaf(0.), f32::INFINITY);
412        assert_eq!(f_digammaf(-0.), f32::INFINITY);
413        assert!(f_digammaf(f32::NEG_INFINITY).is_nan());
414        assert!(f_digammaf(f32::NAN).is_nan());
415    }
416}