pxfm/exponents/
exp2m1f.rs

1/*
2 * // Copyright (c) Radzivon Bartoshyk 6/2025. All rights reserved.
3 * //
4 * // Redistribution and use in source and binary forms, with or without modification,
5 * // are permitted provided that the following conditions are met:
6 * //
7 * // 1.  Redistributions of source code must retain the above copyright notice, this
8 * // list of conditions and the following disclaimer.
9 * //
10 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11 * // this list of conditions and the following disclaimer in the documentation
12 * // and/or other materials provided with the distribution.
13 * //
14 * // 3.  Neither the name of the copyright holder nor the names of its
15 * // contributors may be used to endorse or promote products derived from
16 * // this software without specific prior written permission.
17 * //
18 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29use crate::common::f_fmla;
30use crate::exponents::exp2f::EXP2F_TABLE;
31use crate::polyeval::f_polyeval3;
32use crate::round::RoundFinite;
33
34/// Computes 2^x - 1
35///
36/// Max found ULP 0.5
37#[inline]
38pub fn f_exp2m1f(x: f32) -> f32 {
39    let x_u = x.to_bits();
40    let x_abs = x_u & 0x7fff_ffffu32;
41    if x_abs >= 0x4300_0000u32 || x_abs <= 0x3d00_0000u32 {
42        // |x| <= 2^-5
43        if x_abs <= 0x3d00_0000u32 {
44            // Minimax polynomial generated by Sollya with:
45            // > display = hexadecimal;
46            // > fpminimax((2^x - 1)/x, 5, [|D...|], [-2^-5, 2^-5]);
47            const C: [u64; 6] = [
48                0x3fe62e42fefa39f3,
49                0x3fcebfbdff82c57b,
50                0x3fac6b08d6f2d7aa,
51                0x3f83b2ab6fc92f5d,
52                0x3f55d897cfe27125,
53                0x3f243090e61e6af1,
54            ];
55            let xd = x as f64;
56            let xsq = xd * xd;
57            let c0 = f_fmla(xd, f64::from_bits(C[1]), f64::from_bits(C[0]));
58            let c1 = f_fmla(xd, f64::from_bits(C[3]), f64::from_bits(C[2]));
59            let c2 = f_fmla(xd, f64::from_bits(C[5]), f64::from_bits(C[4]));
60            let p = f_polyeval3(xsq, c0, c1, c2);
61            return (p * xd) as f32;
62        }
63
64        // x >= 128, or x is nan
65        if x.is_sign_positive() {
66            // x >= 128 and 2^x - 1 rounds to +inf, or x is +inf or nan
67            return x + f32::INFINITY;
68        }
69    }
70
71    if x <= -25.0 {
72        // 2^(-inf) - 1 = -1
73        if x.is_infinite() {
74            return -1.0;
75        }
76        // 2^nan - 1 = nan
77        if x.is_nan() {
78            return x;
79        }
80        return -1.0;
81    }
82
83    // For -25 < x < 128, to compute 2^x, we perform the following range
84    // reduction: find hi, mid, lo such that:
85    //   x = hi + mid + lo, in which:
86    //     hi is an integer,
87    //     0 <= mid * 2^5 < 32 is an integer,
88    //     -2^(-6) <= lo <= 2^(-6).
89    // In particular,
90    //   hi + mid = round(x * 2^5) * 2^(-5).
91    // Then,
92    //   2^x = 2^(hi + mid + lo) = 2^hi * 2^mid * 2^lo.
93    // 2^mid is stored in the lookup table of 32 elements.
94    // 2^lo is computed using a degree-4 minimax polynomial generated by Sollya.
95    // We perform 2^hi * 2^mid by simply add hi to the exponent field of 2^mid.
96
97    // kf = (hi + mid) * 2^5 = round(x * 2^5)
98
99    let xd = x as f64;
100
101    let kf = (x * 64.0).round_finite();
102    let k = unsafe { kf.to_int_unchecked::<i32>() }; // it's already not indeterminate.
103    // dx = lo = x - (hi + mid) = x - kf * 2^(-6)
104    let dx = f_fmla(f64::from_bits(0xbf90000000000000), kf as f64, xd);
105
106    const TABLE_BITS: u32 = 6;
107    const TABLE_MASK: u64 = (1u64 << TABLE_BITS) - 1;
108
109    // hi = floor(kf * 2^(-5))
110    // exp_hi = shift hi to the exponent field of double precision.
111    let exp_hi: i64 = ((k >> TABLE_BITS) as i64).wrapping_shl(52);
112
113    // mh = 2^hi * 2^mid
114    // mh_bits = bit field of mh
115    let mh_bits = (EXP2F_TABLE[((k as u64) & TABLE_MASK) as usize] as i64).wrapping_add(exp_hi);
116    let mh = f64::from_bits(mh_bits as u64);
117
118    // Degree-4 polynomial approximating (2^x - 1)/x generated by Sollya with:
119    // > P = fpminimax((2^y - 1)/y, 4, [|D...|], [-1/64. 1/64]);
120    // see ./notes/exp2f.sollya
121    const C: [u64; 5] = [
122        0x3fe62e42fefa39ef,
123        0x3fcebfbdff8131c4,
124        0x3fac6b08d7061695,
125        0x3f83b2b1bee74b2a,
126        0x3f55d88091198529,
127    ];
128    let dx_sq = dx * dx;
129    let c1 = f_fmla(dx, f64::from_bits(C[0]), 1.0);
130    let c2 = f_fmla(dx, f64::from_bits(C[2]), f64::from_bits(C[1]));
131    let c3 = f_fmla(dx, f64::from_bits(C[4]), f64::from_bits(C[3]));
132    let p = f_polyeval3(dx_sq, c1, c2, c3);
133    // 2^x = 2^(hi + mid + lo)
134    //     = 2^(hi + mid) * 2^lo
135    //     ~ mh * (1 + lo * P(lo))
136    //     = mh + (mh*lo) * P(lo)
137    f_fmla(p, mh, -1.) as f32
138}
139
140#[cfg(test)]
141mod tests {
142    use super::*;
143
144    #[test]
145    fn test_exp2m1f() {
146        assert_eq!(f_exp2m1f(0.432423), 0.34949815);
147        assert_eq!(f_exp2m1f(-4.), -0.9375);
148        assert_eq!(f_exp2m1f(5.43122), 42.14795);
149        assert_eq!(f_exp2m1f(4.), 15.0);
150        assert_eq!(f_exp2m1f(3.), 7.);
151        assert_eq!(f_exp2m1f(0.1), 0.07177346);
152        assert_eq!(f_exp2m1f(0.0543432432), 0.038386293);
153        assert!(f_exp2m1f(f32::NAN).is_nan());
154        assert_eq!(f_exp2m1f(f32::INFINITY), f32::INFINITY);
155        assert_eq!(f_exp2m1f(f32::NEG_INFINITY), -1.0);
156    }
157}