pxfm/cube_roots/cbrtf.rs
1/*
2 * // Copyright (c) Radzivon Bartoshyk 4/2025. All rights reserved.
3 * //
4 * // Redistribution and use in source and binary forms, with or without modification,
5 * // are permitted provided that the following conditions are met:
6 * //
7 * // 1. Redistributions of source code must retain the above copyright notice, this
8 * // list of conditions and the following disclaimer.
9 * //
10 * // 2. Redistributions in binary form must reproduce the above copyright notice,
11 * // this list of conditions and the following disclaimer in the documentation
12 * // and/or other materials provided with the distribution.
13 * //
14 * // 3. Neither the name of the copyright holder nor the names of its
15 * // contributors may be used to endorse or promote products derived from
16 * // this software without specific prior written permission.
17 * //
18 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29use crate::common::f_fmla;
30
31#[inline(always)]
32pub(crate) fn halley_refine_d(x: f64, a: f64) -> f64 {
33 let tx = x * x * x;
34 x * f_fmla(2., a, tx) / f_fmla(2., tx, a)
35}
36
37#[inline(always)]
38const fn halley_refine(x: f32, a: f32) -> f32 {
39 let tx = x * x * x;
40 x * (tx + 2f32 * a) / (2f32 * tx + a)
41}
42
43/// Cbrt for given value for const context.
44/// This is simplified version just to make a good approximation on const context.
45#[inline]
46pub const fn cbrtf(x: f32) -> f32 {
47 let u = x.to_bits();
48 let au = u.wrapping_shl(1);
49 if au < (1u32 << 24) || au >= (0xffu32 << 24) {
50 if au >= (0xffu32 << 24) {
51 return x + x; /* inf, nan */
52 }
53 if au == 0 {
54 return x; /* +-0 */
55 }
56 }
57
58 const B1: u32 = 709958130;
59 let mut t: f32;
60 let mut ui: u32 = x.to_bits();
61 let mut hx: u32 = ui & 0x7fffffff;
62
63 hx = (hx / 3).wrapping_add(B1);
64 ui &= 0x80000000;
65 ui |= hx;
66
67 t = f32::from_bits(ui);
68 t = halley_refine(t, x);
69 halley_refine(t, x)
70}
71
72/// Computes cube root
73///
74/// Peak ULP on 64 bit = 0.49999577
75#[inline]
76pub fn f_cbrtf(x: f32) -> f32 {
77 let u = x.to_bits();
78 let au = u.wrapping_shl(1);
79 if au < (1u32 << 24) || au >= (0xffu32 << 24) {
80 if au >= (0xffu32 << 24) {
81 return x + x; /* inf, nan */
82 }
83 if au == 0 {
84 return x; /* +-0 */
85 }
86 }
87
88 let mut ui: u32 = x.to_bits();
89 let mut hx: u32 = ui & 0x7fffffff;
90
91 if hx < 0x00800000 {
92 /* zero or subnormal? */
93 if hx == 0 {
94 return x; /* cbrt(+-0) is itself */
95 }
96 const TWO_EXP_24: f32 = f32::from_bits(0x4b800000);
97 ui = (x * TWO_EXP_24).to_bits();
98 hx = ui & 0x7fffffff;
99 const B2: u32 = 642849266;
100 hx = (hx / 3).wrapping_add(B2);
101 } else {
102 const B1: u32 = 709958130;
103 hx = (hx / 3).wrapping_add(B1);
104 }
105 ui &= 0x80000000;
106 ui |= hx;
107
108 let mut t = f32::from_bits(ui) as f64;
109 let dx = x as f64;
110 t = halley_refine_d(t, dx);
111 halley_refine_d(t, dx) as f32
112}
113
114#[cfg(test)]
115mod tests {
116 use super::*;
117
118 #[test]
119 fn test_fcbrtf() {
120 assert_eq!(f_cbrtf(0.0), 0.0);
121 assert_eq!(f_cbrtf(-27.0), -3.0);
122 assert_eq!(f_cbrtf(27.0), 3.0);
123 assert_eq!(f_cbrtf(64.0), 4.0);
124 assert_eq!(f_cbrtf(-64.0), -4.0);
125 assert_eq!(f_cbrtf(f32::NEG_INFINITY), f32::NEG_INFINITY);
126 assert_eq!(f_cbrtf(f32::INFINITY), f32::INFINITY);
127 assert!(f_cbrtf(f32::NAN).is_nan());
128 }
129}