pxfm/bessel/
k1f.rs

1/*
2 * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved.
3 * //
4 * // Redistribution and use in source and binary forms, with or without modification,
5 * // are permitted provided that the following conditions are met:
6 * //
7 * // 1.  Redistributions of source code must retain the above copyright notice, this
8 * // list of conditions and the following disclaimer.
9 * //
10 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11 * // this list of conditions and the following disclaimer in the documentation
12 * // and/or other materials provided with the distribution.
13 * //
14 * // 3.  Neither the name of the copyright holder nor the names of its
15 * // contributors may be used to endorse or promote products derived from
16 * // this software without specific prior written permission.
17 * //
18 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29use crate::common::f_fmla;
30use crate::exponents::core_expf;
31use crate::logs::fast_logf;
32use crate::polyeval::{f_estrin_polyeval8, f_polyeval3, f_polyeval4};
33
34/// Modified Bessel of the second kind of order 1
35///
36/// Max ULP 0.5
37pub fn f_k1f(x: f32) -> f32 {
38    let ux = x.to_bits();
39    if ux >= 0xffu32 << 23 || ux == 0 {
40        // |x| == 0, |x| == inf, |x| == NaN, x < 0
41        if ux.wrapping_shl(1) == 0 {
42            return f32::INFINITY;
43        }
44        if x.is_infinite() {
45            return if x.is_sign_positive() { 0. } else { f32::NAN };
46        }
47        return x + f32::NAN;
48    }
49
50    let xb = x.to_bits();
51
52    if xb >= 0x42cbc779u32 {
53        // x > 101.889595
54        return 0.;
55    }
56
57    if xb <= 0x3f800000u32 {
58        // x <= 1.0
59        if xb <= 0x34000000u32 {
60            // |x| <= f32::EPSILON
61            let dx = x as f64;
62            let leading_term = 1. / dx;
63            if xb <= 0x3109705fu32 {
64                // |x| <= 2e-9
65                // taylor series for tiny K1(x) ~ 1/x + O(x)
66                return leading_term as f32;
67            }
68            // taylor series for small K1(x) ~ 1/x+1/4 (-1+2 EulerGamma-2 Log[2]+2 Log[x]) x + O(x^3)
69            const C: f64 = f64::from_bits(0xbff3b5b6028a83d7); // -1+2 EulerGamma-2 Log[2]
70            let log_x = fast_logf(x);
71            let r = f_fmla(log_x, 2., C);
72            let w0 = f_fmla(dx * 0.25, r, leading_term);
73            return w0 as f32;
74        }
75        return k1f_small(x);
76    }
77
78    k1f_asympt(x)
79}
80
81/**
82Computes
83I1(x) = x/2 * (1 + 1 * (x/2)^2 + (x/2)^4 * P((x/2)^2))
84
85Generated by Woflram Mathematica:
86
87```text
88<<FunctionApproximations`
89ClearAll["Global`*"]
90f[x_]:=(BesselI[1,x]*2/x-1-1/2(x/2)^2)/(x/2)^4
91g[z_]:=f[2 Sqrt[z]]
92{err, approx}=MiniMaxApproximation[g[z],{z,{0.000000001,1},3,2},WorkingPrecision->60]
93poly=Numerator[approx][[1]];
94coeffs=CoefficientList[poly,z];
95TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
96poly=Denominator[approx][[1]];
97coeffs=CoefficientList[poly,z];
98TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
99```
100**/
101#[inline]
102fn i1f_small(x: f32) -> f64 {
103    let dx = x as f64;
104    let x_over_two = dx * 0.5;
105    let x_over_two_sqr = x_over_two * x_over_two;
106    let x_over_two_p4 = x_over_two_sqr * x_over_two_sqr;
107
108    let p_num = f_polyeval4(
109        x_over_two_sqr,
110        f64::from_bits(0x3fb5555555555355),
111        f64::from_bits(0x3f6ebf07f0dbc49b),
112        f64::from_bits(0x3f1fdc02bf28a8d9),
113        f64::from_bits(0x3ebb5e7574c700a6),
114    );
115    let p_den = f_polyeval3(
116        x_over_two_sqr,
117        f64::from_bits(0x3ff0000000000000),
118        f64::from_bits(0xbfa39b64b6135b5a),
119        f64::from_bits(0x3f3fa729bbe951f9),
120    );
121    let p = p_num / p_den;
122
123    let p1 = f_fmla(0.5, x_over_two_sqr, 1.);
124    let p2 = f_fmla(x_over_two_p4, p, p1);
125    p2 * x_over_two
126}
127
128/**
129Series for
130f(x) := BesselK(1, x) - Log(x)*BesselI(1, x) - 1/x
131
132Generated by Wolfram Mathematica:
133```text
134<<FunctionApproximations`
135ClearAll["Global`*"]
136f[x_]:=(BesselK[1, x]-Log[x]BesselI[1,x]-1/x)/x
137g[z_]:=f[Sqrt[z]]
138{err, approx}=MiniMaxApproximation[g[z],{z,{0.000000001,1},3,3},WorkingPrecision->60]
139poly=Numerator[approx][[1]];
140coeffs=CoefficientList[poly,z];
141TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
142poly=Denominator[approx][[1]];
143coeffs=CoefficientList[poly,z];
144TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
145```
146**/
147#[inline]
148fn k1f_small(x: f32) -> f32 {
149    let dx = x as f64;
150    let rcp = 1. / dx;
151    let x2 = dx * dx;
152    let p_num = f_polyeval4(
153        x2,
154        f64::from_bits(0xbfd3b5b6028a83d6),
155        f64::from_bits(0xbfb3fde2c83f7cca),
156        f64::from_bits(0xbf662b2e5defbe8c),
157        f64::from_bits(0xbefa2a63cc5c4feb),
158    );
159    let p_den = f_polyeval4(
160        x2,
161        f64::from_bits(0x3ff0000000000000),
162        f64::from_bits(0xbf9833197207a7c6),
163        f64::from_bits(0x3f315663bc7330ef),
164        f64::from_bits(0xbeb9211958f6b8c3),
165    );
166    let p = p_num / p_den;
167
168    let lg = fast_logf(x);
169    let v_i = i1f_small(x);
170    let z = f_fmla(lg, v_i, rcp);
171    let z0 = f_fmla(p, dx, z);
172    z0 as f32
173}
174
175/**
176Generated by Wolfram Mathematica:
177```text
178<<FunctionApproximations`
179ClearAll["Global`*"]
180f[x_]:=Sqrt[x] Exp[x] BesselK[1,x]
181g[z_]:=f[1/z]
182{err, approx}=MiniMaxApproximation[g[z],{z,{0.000000001,1},7,7},WorkingPrecision->60]
183poly=Numerator[approx][[1]];
184coeffs=CoefficientList[poly,z];
185TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
186poly=Denominator[approx][[1]];
187coeffs=CoefficientList[poly,z];
188TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
189```
190**/
191#[inline]
192fn k1f_asympt(x: f32) -> f32 {
193    let dx = x as f64;
194    let recip = 1. / dx;
195    let e = core_expf(x);
196    let r_sqrt = dx.sqrt();
197    let p_num = f_estrin_polyeval8(
198        recip,
199        f64::from_bits(0x3ff40d931ff6270d),
200        f64::from_bits(0x402d250670ed7a6c),
201        f64::from_bits(0x404e517b9b494d38),
202        f64::from_bits(0x405cb02b7433a838),
203        f64::from_bits(0x405a03e606a1b871),
204        f64::from_bits(0x4045c98d4308dbcd),
205        f64::from_bits(0x401d115c4ce0540c),
206        f64::from_bits(0x3fd4213e72b24b3a),
207    );
208    let p_den = f_estrin_polyeval8(
209        recip,
210        f64::from_bits(0x3ff0000000000000),
211        f64::from_bits(0x402681096aa3a87d),
212        f64::from_bits(0x404623ab8d72ceea),
213        f64::from_bits(0x40530af06ea802b2),
214        f64::from_bits(0x404d526906fb9cec),
215        f64::from_bits(0x403281caca389f1b),
216        f64::from_bits(0x3ffdb93996948bb4),
217        f64::from_bits(0x3f9a009da07eb989),
218    );
219    let v = p_num / p_den;
220    let pp = v / (e * r_sqrt);
221    pp as f32
222}
223
224#[cfg(test)]
225mod tests {
226    use super::*;
227
228    #[test]
229    fn test_k1f() {
230        assert_eq!(f_k1f(0.3), 3.055992);
231        assert_eq!(f_k1f(1.89), 0.16180483);
232        assert_eq!(f_k1f(5.89), 0.0015156545);
233        assert_eq!(f_k1f(101.89), 0.);
234        assert_eq!(f_k1f(0.), f32::INFINITY);
235        assert_eq!(f_k1f(-0.), f32::INFINITY);
236        assert!(f_k1f(-0.5).is_nan());
237        assert!(f_k1f(f32::NEG_INFINITY).is_nan());
238        assert_eq!(f_k1f(f32::INFINITY), 0.);
239    }
240}