pxfm/bessel/
j1f.rs

1/*
2 * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved.
3 * //
4 * // Redistribution and use in source and binary forms, with or without modification,
5 * // are permitted provided that the following conditions are met:
6 * //
7 * // 1.  Redistributions of source code must retain the above copyright notice, this
8 * // list of conditions and the following disclaimer.
9 * //
10 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11 * // this list of conditions and the following disclaimer in the documentation
12 * // and/or other materials provided with the distribution.
13 * //
14 * // 3.  Neither the name of the copyright holder nor the names of its
15 * // contributors may be used to endorse or promote products derived from
16 * // this software without specific prior written permission.
17 * //
18 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29use crate::bessel::j1_coeffs::{J1_ZEROS, J1_ZEROS_VALUE};
30use crate::bessel::j1f_coeffs::J1F_COEFFS;
31use crate::bessel::trigo_bessel::sin_small;
32use crate::double_double::DoubleDouble;
33use crate::polyeval::{f_polyeval7, f_polyeval10, f_polyeval12, f_polyeval14};
34use crate::rounding::CpuCeil;
35use crate::sincos_reduce::rem2pif_any;
36
37/// Bessel of the first kind of order 1
38///
39/// Max ULP 0.5
40///
41/// Note about accuracy:
42/// - Close to zero Bessel have tiny values such that testing against MPFR must be done exactly
43///   in the same precision, since any nearest representable number have ULP > 0.5.
44///   For example `J1(0.000000000000000000000000000000000000023509886)` in single precision
45///   have an error at least 0.72 ULP for any number with extended precision,
46///   that would be represented in f32.
47pub fn f_j1f(x: f32) -> f32 {
48    let ux = x.to_bits().wrapping_shl(1);
49    if ux >= 0xffu32 << 24 || ux == 0 {
50        // |x| == 0, |x| == inf, |x| == NaN
51        if ux == 0 {
52            // |x| == 0
53            return x;
54        }
55        if x.is_infinite() {
56            return 0.;
57        }
58        return x + f32::NAN; // x == NaN
59    }
60
61    let ax = x.to_bits() & 0x7fff_ffff;
62
63    if ax < 0x429533c2u32 {
64        // |x| <= 74.60109
65        if ax < 0x3e800000u32 {
66            // |x| <= 0.25
67            if ax <= 0x34000000u32 {
68                // |x| <= f32::EPSILON
69                // taylor series for J1(x) ~ x/2 + O(x^3)
70                return x * 0.5;
71            }
72            return poly_near_zero(x);
73        }
74        return small_argument_path(x);
75    }
76
77    // Exceptional cases:
78    if ax == 0x6ef9be45 {
79        return if x.is_sign_negative() {
80            f32::from_bits(0x187d8a8f)
81        } else {
82            -f32::from_bits(0x187d8a8f)
83        };
84    } else if ax == 0x7f0e5a38 {
85        return if x.is_sign_negative() {
86            -f32::from_bits(0x131f680b)
87        } else {
88            f32::from_bits(0x131f680b)
89        };
90    }
91
92    j1f_asympt(x) as f32
93}
94
95#[inline]
96fn j1f_rsqrt(x: f64) -> f64 {
97    (1. / x) * x.sqrt()
98}
99
100/*
101   Evaluates:
102   J1 = sqrt(2/(PI*x)) * beta(x) * cos(x - 3*PI/4 - alpha(x))
103   discarding 1*PI/2 using identities gives:
104   J1 = sqrt(2/(PI*x)) * beta(x) * sin(x - PI/4 - alpha(x))
105
106   to avoid squashing small (-PI/4 - alpha(x)) into a large x actual expansion is:
107
108   J1 = sqrt(2/(PI*x)) * beta(x) * sin((x mod 2*PI) - PI/4 - alpha(x))
109*/
110#[inline]
111fn j1f_asympt(x: f32) -> f64 {
112    static SGN: [f64; 2] = [1., -1.];
113    let sign_scale = SGN[x.is_sign_negative() as usize];
114    let x = f32::from_bits(x.to_bits() & 0x7fff_ffff);
115
116    let dx = x as f64;
117
118    let alpha = j1f_asympt_alpha(dx);
119    let beta = j1f_asympt_beta(dx);
120
121    let angle = rem2pif_any(x);
122
123    const SQRT_2_OVER_PI: f64 = f64::from_bits(0x3fe9884533d43651);
124    const MPI_OVER_4: f64 = f64::from_bits(0xbfe921fb54442d18);
125
126    let x0pi34 = MPI_OVER_4 - alpha;
127    let r0 = angle + x0pi34;
128
129    let m_sin = sin_small(r0);
130
131    let z0 = beta * m_sin;
132    let scale = SQRT_2_OVER_PI * j1f_rsqrt(dx);
133
134    scale * z0 * sign_scale
135}
136
137/**
138Note expansion generation below: this is negative series expressed in Sage as positive,
139so before any real evaluation `x=1/x` should be applied.
140
141Generated by SageMath:
142```python
143def binomial_like(n, m):
144    prod = QQ(1)
145    z = QQ(4)*(n**2)
146    for k in range(1,m + 1):
147        prod *= (z - (2*k - 1)**2)
148    return prod / (QQ(2)**(2*m) * (ZZ(m).factorial()))
149
150R = LaurentSeriesRing(RealField(300), 'x',default_prec=300)
151x = R.gen()
152
153def Pn_asymptotic(n, y, terms=10):
154    # now y = 1/x
155    return sum( (-1)**m * binomial_like(n, 2*m) / (QQ(2)**(2*m)) * y**(QQ(2)*m) for m in range(terms) )
156
157def Qn_asymptotic(n, y, terms=10):
158    return sum( (-1)**m * binomial_like(n, 2*m + 1) / (QQ(2)**(2*m + 1)) * y**(QQ(2)*m + 1) for m in range(terms) )
159
160P = Pn_asymptotic(1, x, 50)
161Q = Qn_asymptotic(1, x, 50)
162
163R_series = (-Q/P)
164
165# alpha is atan(R_series) so we're doing Taylor series atan expansion on R_series
166
167arctan_series_Z = sum([QQ(-1)**k * x**(QQ(2)*k+1) / RealField(700)(RealField(700)(2)*k+1) for k in range(25)])
168alpha_series = arctan_series_Z(R_series)
169
170# see the series
171print(alpha_series)
172```
173
174See notes/bessel_asympt.ipynb for generation
175**/
176#[inline]
177pub(crate) fn j1f_asympt_alpha(x: f64) -> f64 {
178    const C: [u64; 12] = [
179        0xbfd8000000000000,
180        0x3fc5000000000000,
181        0xbfd7bccccccccccd,
182        0x4002f486db6db6db,
183        0xc03e9fbf40000000,
184        0x4084997b55945d17,
185        0xc0d4a914195269d9,
186        0x412cd1b53816aec1,
187        0xc18aa4095d419351,
188        0x41ef809305f11b9d,
189        0xc2572e6809ed618b,
190        0x42c4c5b6057839f9,
191    ];
192    let recip = 1. / x;
193    let x2 = recip * recip;
194    let p = f_polyeval12(
195        x2,
196        f64::from_bits(C[0]),
197        f64::from_bits(C[1]),
198        f64::from_bits(C[2]),
199        f64::from_bits(C[3]),
200        f64::from_bits(C[4]),
201        f64::from_bits(C[5]),
202        f64::from_bits(C[6]),
203        f64::from_bits(C[7]),
204        f64::from_bits(C[8]),
205        f64::from_bits(C[9]),
206        f64::from_bits(C[10]),
207        f64::from_bits(C[11]),
208    );
209    p * recip
210}
211
212/**
213Note expansion generation below: this is negative series expressed in Sage as positive,
214so before any real evaluation `x=1/x` should be applied
215
216Generated by SageMath:
217```python
218def binomial_like(n, m):
219    prod = QQ(1)
220    z = QQ(4)*(n**2)
221    for k in range(1,m + 1):
222        prod *= (z - (2*k - 1)**2)
223    return prod / (QQ(2)**(2*m) * (ZZ(m).factorial()))
224
225R = LaurentSeriesRing(RealField(300), 'x',default_prec=300)
226x = R.gen()
227
228def Pn_asymptotic(n, y, terms=10):
229    # now y = 1/x
230    return sum( (-1)**m * binomial_like(n, 2*m) / (QQ(2)**(2*m)) * y**(QQ(2)*m) for m in range(terms) )
231
232def Qn_asymptotic(n, y, terms=10):
233    return sum( (-1)**m * binomial_like(n, 2*m + 1) / (QQ(2)**(2*m + 1)) * y**(QQ(2)*m + 1) for m in range(terms) )
234
235P = Pn_asymptotic(1, x, 50)
236Q = Qn_asymptotic(1, x, 50)
237
238def sqrt_series(s):
239    val = S.valuation()
240    lc = S[val]  # Leading coefficient
241    b = lc.sqrt() * x**(val // 2)
242
243    for _ in range(5):
244        b = (b + S / b) / 2
245        b = b
246    return b
247
248S = (P**2 + Q**2).truncate(50)
249
250b_series = sqrt_series(S).truncate(30)
251# see the beta series
252print(b_series)
253```
254
255See notes/bessel_asympt.ipynb for generation
256**/
257#[inline]
258pub(crate) fn j1f_asympt_beta(x: f64) -> f64 {
259    const C: [u64; 10] = [
260        0x3ff0000000000000,
261        0x3fc8000000000000,
262        0xbfc8c00000000000,
263        0x3fe9c50000000000,
264        0xc01ef5b680000000,
265        0x40609860dd400000,
266        0xc0abae9b7a06e000,
267        0x41008711d41c1428,
268        0xc15ab70164c8be6e,
269        0x41bc1055e24f297f,
270    ];
271    let recip = 1. / x;
272    let x2 = recip * recip;
273    f_polyeval10(
274        x2,
275        f64::from_bits(C[0]),
276        f64::from_bits(C[1]),
277        f64::from_bits(C[2]),
278        f64::from_bits(C[3]),
279        f64::from_bits(C[4]),
280        f64::from_bits(C[5]),
281        f64::from_bits(C[6]),
282        f64::from_bits(C[7]),
283        f64::from_bits(C[8]),
284        f64::from_bits(C[9]),
285    )
286}
287
288/**
289Generated in Sollya:
290```python
291pretty = proc(u) {
292  return ~(floor(u*1000)/1000);
293};
294
295bessel_j1 = library("./cmake-build-release/libbessel_sollya.dylib");
296
297f = bessel_j1(x)/x;
298d = [0, 0.921];
299w = 1;
300pf = fpminimax(f, [|0,2,4,6,8,10,12|], [|D...|], d, absolute, floating);
301
302w = 1;
303or_f = bessel_j1(x);
304pf1 = pf * x;
305err_p = -log2(dirtyinfnorm(pf1*w-or_f, d));
306print ("relative error:", pretty(err_p));
307
308for i from 0 to degree(pf) by 2 do {
309    print("'", coeff(pf, i), "',");
310};
311```
312See ./notes/bessel_sollya/bessel_j1f_at_zero.sollya
313**/
314#[inline]
315fn poly_near_zero(x: f32) -> f32 {
316    let dx = x as f64;
317    let x2 = dx * dx;
318    let p = f_polyeval7(
319        x2,
320        f64::from_bits(0x3fe0000000000000),
321        f64::from_bits(0xbfaffffffffffffc),
322        f64::from_bits(0x3f65555555554089),
323        f64::from_bits(0xbf0c71c71c2a74ae),
324        f64::from_bits(0x3ea6c16bbd1dc5c1),
325        f64::from_bits(0xbe384562afb69e7d),
326        f64::from_bits(0x3dc248d0d0221cd0),
327    );
328    (p * dx) as f32
329}
330
331/// This method on small range searches for nearest zero or extremum.
332/// Then picks stored series expansion at the point end evaluates the poly at the point.
333#[inline]
334fn small_argument_path(x: f32) -> f32 {
335    static SIGN: [f64; 2] = [1., -1.];
336    let sign_scale = SIGN[x.is_sign_negative() as usize];
337    let x_abs = f32::from_bits(x.to_bits() & 0x7fff_ffff) as f64;
338
339    // let avg_step = 74.60109 / 47.0;
340    // let inv_step = 1.0 / avg_step;
341
342    const INV_STEP: f64 = 0.6300176043004198;
343
344    let fx = x_abs * INV_STEP;
345    const J1_ZEROS_COUNT: f64 = (J1_ZEROS.len() - 1) as f64;
346    let idx0 = unsafe { fx.min(J1_ZEROS_COUNT).to_int_unchecked::<usize>() };
347    let idx1 = unsafe {
348        fx.cpu_ceil()
349            .min(J1_ZEROS_COUNT)
350            .to_int_unchecked::<usize>()
351    };
352
353    let found_zero0 = DoubleDouble::from_bit_pair(J1_ZEROS[idx0]);
354    let found_zero1 = DoubleDouble::from_bit_pair(J1_ZEROS[idx1]);
355
356    let dist0 = (found_zero0.hi - x_abs).abs();
357    let dist1 = (found_zero1.hi - x_abs).abs();
358
359    let (found_zero, idx, dist) = if dist0 < dist1 {
360        (found_zero0, idx0, dist0)
361    } else {
362        (found_zero1, idx1, dist1)
363    };
364
365    if idx == 0 {
366        return poly_near_zero(x);
367    }
368
369    // We hit exact zero, value, better to return it directly
370    if dist == 0. {
371        return (f64::from_bits(J1_ZEROS_VALUE[idx]) * sign_scale) as f32;
372    }
373
374    let c = &J1F_COEFFS[idx - 1];
375
376    let r = (x_abs - found_zero.hi) - found_zero.lo;
377
378    let p = f_polyeval14(
379        r,
380        f64::from_bits(c[0]),
381        f64::from_bits(c[1]),
382        f64::from_bits(c[2]),
383        f64::from_bits(c[3]),
384        f64::from_bits(c[4]),
385        f64::from_bits(c[5]),
386        f64::from_bits(c[6]),
387        f64::from_bits(c[7]),
388        f64::from_bits(c[8]),
389        f64::from_bits(c[9]),
390        f64::from_bits(c[10]),
391        f64::from_bits(c[11]),
392        f64::from_bits(c[12]),
393        f64::from_bits(c[13]),
394    );
395
396    (p * sign_scale) as f32
397}
398
399#[cfg(test)]
400mod tests {
401    use super::*;
402
403    #[test]
404    fn test_f_j1f() {
405        assert_eq!(
406            f_j1f(77.743162408196766932633181568235159),
407            0.09049267898021947
408        );
409        assert_eq!(
410            f_j1f(-0.000000000000000000000000000000000000008827127),
411            -0.0000000000000000000000000000000000000044135635
412        );
413        assert_eq!(
414            f_j1f(0.000000000000000000000000000000000000008827127),
415            0.0000000000000000000000000000000000000044135635
416        );
417        assert_eq!(f_j1f(5.4), -0.3453447907795863);
418        assert_eq!(
419            f_j1f(84.027189586293545175976760219782591),
420            0.0870430264022591
421        );
422        assert_eq!(f_j1f(f32::INFINITY), 0.);
423        assert_eq!(f_j1f(f32::NEG_INFINITY), 0.);
424        assert!(f_j1f(f32::NAN).is_nan());
425        assert_eq!(f_j1f(-1.7014118e38), 0.000000000000000000006856925);
426    }
427}