pxfm/bessel/
j1.rs

1/*
2 * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved.
3 * //
4 * // Redistribution and use in source and binary forms, with or without modification,
5 * // are permitted provided that the following conditions are met:
6 * //
7 * // 1.  Redistributions of source code must retain the above copyright notice, this
8 * // list of conditions and the following disclaimer.
9 * //
10 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11 * // this list of conditions and the following disclaimer in the documentation
12 * // and/or other materials provided with the distribution.
13 * //
14 * // 3.  Neither the name of the copyright holder nor the names of its
15 * // contributors may be used to endorse or promote products derived from
16 * // this software without specific prior written permission.
17 * //
18 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30#![allow(clippy::excessive_precision)]
31
32use crate::bessel::alpha1::{
33    bessel_1_asympt_alpha, bessel_1_asympt_alpha_fast, bessel_1_asympt_alpha_hard,
34};
35use crate::bessel::beta1::{
36    bessel_1_asympt_beta, bessel_1_asympt_beta_fast, bessel_1_asympt_beta_hard,
37};
38use crate::bessel::i0::bessel_rsqrt_hard;
39use crate::bessel::j1_coeffs::{J1_COEFFS, J1_ZEROS, J1_ZEROS_VALUE};
40use crate::bessel::j1_coeffs_taylor::J1_COEFFS_TAYLOR;
41use crate::common::f_fmla;
42use crate::double_double::DoubleDouble;
43use crate::dyadic_float::{DyadicFloat128, DyadicSign};
44use crate::polyeval::{f_polyeval8, f_polyeval9, f_polyeval12, f_polyeval19};
45use crate::rounding::CpuCeil;
46use crate::sin_helper::{sin_dd_small, sin_dd_small_fast, sin_f128_small};
47use crate::sincos_reduce::{AngleReduced, rem2pi_any, rem2pi_f128};
48
49/// Bessel of the first kind of order 1
50///
51/// Note about accuracy:
52/// - Close to zero Bessel have tiny values such that testing against MPFR must be done exactly
53///   in the same precision, since any nearest representable number have ULP > 0.5,
54///   for example `J1(0.000000000000000000000000000000000000023509886)` in single precision
55///   have 0.7 ULP for any number with extended precision that would be represented in f32
56///   Same applies to J1(4.4501477170144018E-309) in double precision and some others subnormal numbers
57pub fn f_j1(x: f64) -> f64 {
58    let ux = x.to_bits().wrapping_shl(1);
59
60    if ux >= 0x7ffu64 << 53 || ux <= 0x7960000000000000u64 {
61        // |x| <= f64::EPSILON, |x| == inf, x == NaN
62        if ux <= 0x72338c9356bb0314u64 {
63            // |x| <= 0.000000000000000000000000000000001241
64            // J1(x) ~ x/2+O[x]^3
65            return x * 0.5;
66        }
67        if ux <= 0x7960000000000000u64 {
68            // |x| <= f64::EPSILON
69            // J1(x) ~ x/2-x^3/16+O[x]^5
70            let quad_part_x = x * 0.125; // exact. x / 8
71            return f_fmla(quad_part_x, -quad_part_x, 0.5) * x;
72        }
73        if x.is_infinite() {
74            return 0.;
75        }
76        return x + f64::NAN; // x == NaN
77    }
78
79    let ax: u64 = x.to_bits() & 0x7fff_ffff_ffff_ffff;
80
81    if ax < 0x4052a6784230fcf8u64 {
82        // |x| < 74.60109
83        if ax < 0x3feccccccccccccd {
84            // |x| < 0.9
85            return j1_maclaurin_series_fast(x);
86        }
87        return j1_small_argument_fast(x);
88    }
89
90    j1_asympt_fast(x)
91}
92
93/*
94   Evaluates:
95   J1 = sqrt(2/(PI*x)) * beta(x) * cos(x - 3*PI/4 - alpha(x))
96   discarding 1*PI/2 using identities gives:
97   J1 = sqrt(2/(PI*x)) * beta(x) * sin(x - PI/4 - alpha(x))
98
99   to avoid squashing small (-PI/4 - alpha(x)) into a large x actual expansion is:
100
101   J1 = sqrt(2/(PI*x)) * beta(x) * sin((x mod 2*PI) - PI/4 - alpha(x))
102*/
103#[inline]
104fn j1_asympt_fast(x: f64) -> f64 {
105    let origin_x = x;
106    static SGN: [f64; 2] = [1., -1.];
107    let sign_scale = SGN[x.is_sign_negative() as usize];
108    let x = x.abs();
109
110    const SQRT_2_OVER_PI: DoubleDouble = DoubleDouble::new(
111        f64::from_bits(0xbc8cbc0d30ebfd15),
112        f64::from_bits(0x3fe9884533d43651),
113    );
114    const MPI_OVER_4: DoubleDouble = DoubleDouble::new(
115        f64::from_bits(0xbc81a62633145c07),
116        f64::from_bits(0xbfe921fb54442d18),
117    );
118
119    let recip = if x.to_bits() > 0x7fd000000000000u64 {
120        DoubleDouble::quick_mult_f64(DoubleDouble::from_exact_safe_div(4.0, x), 0.25)
121    } else {
122        DoubleDouble::from_recip(x)
123    };
124
125    let alpha = bessel_1_asympt_alpha_fast(recip);
126    let beta = bessel_1_asympt_beta_fast(recip);
127
128    let AngleReduced { angle } = rem2pi_any(x);
129
130    // Without full subtraction cancellation happens sometimes
131    let x0pi34 = DoubleDouble::full_dd_sub(MPI_OVER_4, alpha);
132    let r0 = DoubleDouble::full_dd_add(angle, x0pi34);
133
134    let m_sin = sin_dd_small_fast(r0);
135    let z0 = DoubleDouble::quick_mult(beta, m_sin);
136    let r_sqrt = DoubleDouble::from_rsqrt_fast(x);
137    let scale = DoubleDouble::quick_mult(SQRT_2_OVER_PI, r_sqrt);
138    let p = DoubleDouble::quick_mult(scale, z0);
139
140    let err = f_fmla(
141        p.hi,
142        f64::from_bits(0x3be0000000000000), // 2^-65
143        f64::from_bits(0x3a60000000000000), // 2^-89
144    );
145    let ub = p.hi + (p.lo + err);
146    let lb = p.hi + (p.lo - err);
147
148    if ub == lb {
149        return p.to_f64() * sign_scale;
150    }
151
152    j1_asympt(origin_x, recip, r_sqrt, angle)
153}
154
155/*
156   Evaluates:
157   J1 = sqrt(2/(PI*x)) * beta(x) * cos(x - 3*PI/4 - alpha(x))
158   discarding 1*PI/2 using identities gives:
159   J1 = sqrt(2/(PI*x)) * beta(x) * sin(x - PI/4 - alpha(x))
160
161   to avoid squashing small (-PI/4 - alpha(x)) into a large x actual expansion is:
162
163   J1 = sqrt(2/(PI*x)) * beta(x) * sin((x mod 2*PI) - PI/4 - alpha(x))
164*/
165fn j1_asympt(x: f64, recip: DoubleDouble, r_sqrt: DoubleDouble, angle: DoubleDouble) -> f64 {
166    let origin_x = x;
167    static SGN: [f64; 2] = [1., -1.];
168    let sign_scale = SGN[x.is_sign_negative() as usize];
169
170    const SQRT_2_OVER_PI: DoubleDouble = DoubleDouble::new(
171        f64::from_bits(0xbc8cbc0d30ebfd15),
172        f64::from_bits(0x3fe9884533d43651),
173    );
174    const MPI_OVER_4: DoubleDouble = DoubleDouble::new(
175        f64::from_bits(0xbc81a62633145c07),
176        f64::from_bits(0xbfe921fb54442d18),
177    );
178
179    let alpha = bessel_1_asympt_alpha(recip);
180    let beta = bessel_1_asympt_beta(recip);
181
182    // Without full subtraction cancellation happens sometimes
183    let x0pi34 = DoubleDouble::full_dd_sub(MPI_OVER_4, alpha);
184    let r0 = DoubleDouble::full_dd_add(angle, x0pi34);
185
186    let m_sin = sin_dd_small(r0);
187    let z0 = DoubleDouble::quick_mult(beta, m_sin);
188    let scale = DoubleDouble::quick_mult(SQRT_2_OVER_PI, r_sqrt);
189    let r = DoubleDouble::quick_mult(scale, z0);
190
191    let p = DoubleDouble::from_exact_add(r.hi, r.lo);
192
193    let err = f_fmla(
194        p.hi,
195        f64::from_bits(0x3bc0000000000000), // 2^-67
196        f64::from_bits(0x39c0000000000000), // 2^-99
197    );
198
199    let ub = p.hi + (p.lo + err);
200    let lb = p.hi + (p.lo - err);
201
202    if ub == lb {
203        return p.to_f64() * sign_scale;
204    }
205
206    j1_asympt_hard(origin_x)
207}
208
209/**
210Generated in Sollya:
211```text
212pretty = proc(u) {
213  return ~(floor(u*1000)/1000);
214};
215
216bessel_j1 = library("./cmake-build-release/libbessel_sollya.dylib");
217
218f = bessel_j1(x)/x;
219d = [0, 0.921];
220w = 1;
221pf = fpminimax(f, [|0,2,4,6,8,10,12,14,16,18,20,22,24|], [|107, 107, 107, 107, 107, D...|], d, absolute, floating);
222
223w = 1;
224or_f = bessel_j1(x);
225pf1 = pf * x;
226err_p = -log2(dirtyinfnorm(pf1*w-or_f, d));
227print ("relative error:", pretty(err_p));
228
229for i from 0 to degree(pf) by 2 do {
230    print("'", coeff(pf, i), "',");
231};
232```
233See ./notes/bessel_sollya/bessel_j1_at_zero_fast.sollya
234**/
235#[inline]
236pub(crate) fn j1_maclaurin_series_fast(x: f64) -> f64 {
237    const C0: DoubleDouble = DoubleDouble::from_bit_pair((0x3b30e9e087200000, 0x3fe0000000000000));
238    let x2 = DoubleDouble::from_exact_mult(x, x);
239    let p = f_polyeval12(
240        x2.hi,
241        f64::from_bits(0xbfb0000000000000),
242        f64::from_bits(0x3f65555555555555),
243        f64::from_bits(0xbf0c71c71c71c45e),
244        f64::from_bits(0x3ea6c16c16b82b02),
245        f64::from_bits(0xbe3845c87ec0cbef),
246        f64::from_bits(0x3dc27e0313e8534c),
247        f64::from_bits(0xbd4443dd2d0305d0),
248        f64::from_bits(0xbd0985a435fe9aa1),
249        f64::from_bits(0x3d10c82d92c46d30),
250        f64::from_bits(0xbd0aa3684321f219),
251        f64::from_bits(0x3cf8351f29ac345a),
252        f64::from_bits(0xbcd333fe6cd52c9f),
253    );
254    let mut z = DoubleDouble::mul_f64_add(x2, p, C0);
255    z = DoubleDouble::quick_mult_f64(z, x);
256
257    // squaring error (2^-56) + poly error 2^-75
258    let err = f_fmla(
259        x2.hi,
260        f64::from_bits(0x3c70000000000000), // 2^-56
261        f64::from_bits(0x3b40000000000000), // 2^-75
262    );
263    let ub = z.hi + (z.lo + err);
264    let lb = z.hi + (z.lo - err);
265
266    if ub == lb {
267        return z.to_f64();
268    }
269    j1_maclaurin_series(x)
270}
271
272/**
273Generated in Sollya:
274```text
275pretty = proc(u) {
276  return ~(floor(u*1000)/1000);
277};
278
279bessel_j1 = library("./cmake-build-release/libbessel_sollya.dylib");
280
281f = bessel_j1(x)/x;
282d = [0, 0.921];
283w = 1;
284pf = fpminimax(f, [|0,2,4,6,8,10,12,14,16,18,20,22,24|], [|107, 107, 107, 107, 107, D...|], d, absolute, floating);
285
286w = 1;
287or_f = bessel_j1(x);
288pf1 = pf * x;
289err_p = -log2(dirtyinfnorm(pf1*w-or_f, d));
290print ("relative error:", pretty(err_p));
291
292for i from 0 to degree(pf) by 2 do {
293    print("'", coeff(pf, i), "',");
294};
295```
296See ./notes/bessel_sollya/bessel_j1_at_zero.sollya
297**/
298pub(crate) fn j1_maclaurin_series(x: f64) -> f64 {
299    let origin_x = x;
300    static SGN: [f64; 2] = [1., -1.];
301    let sign_scale = SGN[x.is_sign_negative() as usize];
302    let x = x.abs();
303
304    const CL: [(u64, u64); 5] = [
305        (0xb930000000000000, 0x3fe0000000000000),
306        (0x39c8e80000000000, 0xbfb0000000000000),
307        (0x3c05555554f3add7, 0x3f65555555555555),
308        (0xbbac71c4eb0f8c94, 0xbf0c71c71c71c71c),
309        (0xbb3f56b7a43206d4, 0x3ea6c16c16c16c17),
310    ];
311
312    let dx2 = DoubleDouble::from_exact_mult(x, x);
313
314    let p = f_polyeval8(
315        dx2.hi,
316        f64::from_bits(0xbe3845c8a0ce5129),
317        f64::from_bits(0x3dc27e4fb7789ea2),
318        f64::from_bits(0xbd4522a43f633af1),
319        f64::from_bits(0x3cc2c97589d53f97),
320        f64::from_bits(0xbc3ab8151dca7912),
321        f64::from_bits(0x3baf08732286d1d4),
322        f64::from_bits(0xbb10ac65637413f4),
323        f64::from_bits(0xbae4d8336e4f779c),
324    );
325
326    let mut p_e = DoubleDouble::mul_f64_add(dx2, p, DoubleDouble::from_bit_pair(CL[4]));
327    p_e = DoubleDouble::mul_add(dx2, p_e, DoubleDouble::from_bit_pair(CL[3]));
328    p_e = DoubleDouble::mul_add(dx2, p_e, DoubleDouble::from_bit_pair(CL[2]));
329    p_e = DoubleDouble::mul_add(dx2, p_e, DoubleDouble::from_bit_pair(CL[1]));
330    p_e = DoubleDouble::mul_add(dx2, p_e, DoubleDouble::from_bit_pair(CL[0]));
331
332    let p = DoubleDouble::quick_mult_f64(p_e, x);
333
334    let err = f_fmla(
335        p.hi,
336        f64::from_bits(0x3bd0000000000000), // 2^-66
337        f64::from_bits(0x3a00000000000000), // 2^-95
338    );
339    let ub = p.hi + (p.lo + err);
340    let lb = p.hi + (p.lo - err);
341    if ub != lb {
342        return j1_maclaurin_series_hard(origin_x);
343    }
344
345    p.to_f64() * sign_scale
346}
347
348/**
349Taylor expansion at 0
350
351Generated by SageMath:
352```python
353def print_expansion_at_0():
354    print(f"static C: [DyadicFloat128; 13] = ")
355    from mpmath import mp, j1, taylor, expm1
356    poly = taylor(lambda val: j1(val), 0, 26)
357    real_i = 0
358    print("[")
359    for i in range(1, len(poly), 2):
360        print_dyadic(poly[i])
361        real_i = real_i + 1
362    print("],")
363
364    print("];")
365
366mp.prec = 180
367
368print_expansion_at_0()
369```
370**/
371#[cold]
372#[inline(never)]
373fn j1_maclaurin_series_hard(x: f64) -> f64 {
374    static SGN: [f64; 2] = [1., -1.];
375    let sign_scale = SGN[x.is_sign_negative() as usize];
376    let x = x.abs();
377    static C: [DyadicFloat128; 13] = [
378        DyadicFloat128 {
379            sign: DyadicSign::Pos,
380            exponent: -128,
381            mantissa: 0x80000000_00000000_00000000_00000000_u128,
382        },
383        DyadicFloat128 {
384            sign: DyadicSign::Neg,
385            exponent: -131,
386            mantissa: 0x80000000_00000000_00000000_00000000_u128,
387        },
388        DyadicFloat128 {
389            sign: DyadicSign::Pos,
390            exponent: -136,
391            mantissa: 0xaaaaaaaa_aaaaaaaa_aaaaaaaa_aaaaaaab_u128,
392        },
393        DyadicFloat128 {
394            sign: DyadicSign::Neg,
395            exponent: -142,
396            mantissa: 0xe38e38e3_8e38e38e_38e38e38_e38e38e4_u128,
397        },
398        DyadicFloat128 {
399            sign: DyadicSign::Pos,
400            exponent: -148,
401            mantissa: 0xb60b60b6_0b60b60b_60b60b60_b60b60b6_u128,
402        },
403        DyadicFloat128 {
404            sign: DyadicSign::Neg,
405            exponent: -155,
406            mantissa: 0xc22e4506_72894ab6_cd8efb11_d33f5618_u128,
407        },
408        DyadicFloat128 {
409            sign: DyadicSign::Pos,
410            exponent: -162,
411            mantissa: 0x93f27dbb_c4fae397_780b69f5_333c725b_u128,
412        },
413        DyadicFloat128 {
414            sign: DyadicSign::Neg,
415            exponent: -170,
416            mantissa: 0xa91521fb_2a434d3f_649f5485_f169a743_u128,
417        },
418        DyadicFloat128 {
419            sign: DyadicSign::Pos,
420            exponent: -178,
421            mantissa: 0x964bac6d_7ae67d8d_aec68405_485dea03_u128,
422        },
423        DyadicFloat128 {
424            sign: DyadicSign::Neg,
425            exponent: -187,
426            mantissa: 0xd5c0f53a_fe6fa17f_8c7b0b68_39691f4e_u128,
427        },
428        DyadicFloat128 {
429            sign: DyadicSign::Pos,
430            exponent: -196,
431            mantissa: 0xf8bb4be7_8e7896b0_58fee362_01a4370c_u128,
432        },
433        DyadicFloat128 {
434            sign: DyadicSign::Neg,
435            exponent: -205,
436            mantissa: 0xf131bdf7_cff8d02e_e1ef6820_f9d58ab6_u128,
437        },
438        DyadicFloat128 {
439            sign: DyadicSign::Pos,
440            exponent: -214,
441            mantissa: 0xc5e72c48_0d1aec75_3caa2e0d_edd008ca_u128,
442        },
443    ];
444
445    let rx = DyadicFloat128::new_from_f64(x);
446    let dx = rx * rx;
447
448    let mut p = C[12];
449    for i in (0..12).rev() {
450        p = dx * p + C[i];
451    }
452
453    (p * rx).fast_as_f64() * sign_scale
454}
455
456/// This method on small range searches for nearest zero or extremum.
457/// Then picks stored series expansion at the point end evaluates the poly at the point.
458#[inline]
459pub(crate) fn j1_small_argument_fast(x: f64) -> f64 {
460    static SIGN: [f64; 2] = [1., -1.];
461    let sign_scale = SIGN[x.is_sign_negative() as usize];
462    let x_abs = f64::from_bits(x.to_bits() & 0x7fff_ffff_ffff_ffff);
463
464    // let avg_step = 74.60109 / 47.0;
465    // let inv_step = 1.0 / avg_step;
466
467    const INV_STEP: f64 = 0.6300176043004198;
468
469    let fx = x_abs * INV_STEP;
470    const J1_ZEROS_COUNT: f64 = (J1_ZEROS.len() - 1) as f64;
471    let idx0 = unsafe { fx.min(J1_ZEROS_COUNT).to_int_unchecked::<usize>() };
472    let idx1 = unsafe {
473        fx.cpu_ceil()
474            .min(J1_ZEROS_COUNT)
475            .to_int_unchecked::<usize>()
476    };
477
478    let found_zero0 = DoubleDouble::from_bit_pair(J1_ZEROS[idx0]);
479    let found_zero1 = DoubleDouble::from_bit_pair(J1_ZEROS[idx1]);
480
481    let dist0 = (found_zero0.hi - x_abs).abs();
482    let dist1 = (found_zero1.hi - x_abs).abs();
483
484    let (found_zero, idx, dist) = if dist0 < dist1 {
485        (found_zero0, idx0, dist0)
486    } else {
487        (found_zero1, idx1, dist1)
488    };
489
490    if idx == 0 {
491        return j1_maclaurin_series_fast(x);
492    }
493
494    let r = DoubleDouble::full_add_f64(-found_zero, x_abs);
495
496    // We hit exact zero, value, better to return it directly
497    if dist == 0. {
498        return f64::from_bits(J1_ZEROS_VALUE[idx]) * sign_scale;
499    }
500
501    let is_zero_too_close = dist.abs() < 1e-3;
502
503    let c = if is_zero_too_close {
504        &J1_COEFFS_TAYLOR[idx - 1]
505    } else {
506        &J1_COEFFS[idx - 1]
507    };
508
509    let p = f_polyeval19(
510        r.hi,
511        f64::from_bits(c[5].1),
512        f64::from_bits(c[6].1),
513        f64::from_bits(c[7].1),
514        f64::from_bits(c[8].1),
515        f64::from_bits(c[9].1),
516        f64::from_bits(c[10].1),
517        f64::from_bits(c[11].1),
518        f64::from_bits(c[12].1),
519        f64::from_bits(c[13].1),
520        f64::from_bits(c[14].1),
521        f64::from_bits(c[15].1),
522        f64::from_bits(c[16].1),
523        f64::from_bits(c[17].1),
524        f64::from_bits(c[18].1),
525        f64::from_bits(c[19].1),
526        f64::from_bits(c[20].1),
527        f64::from_bits(c[21].1),
528        f64::from_bits(c[22].1),
529        f64::from_bits(c[23].1),
530    );
531
532    let mut z = DoubleDouble::mul_f64_add(r, p, DoubleDouble::from_bit_pair(c[4]));
533    z = DoubleDouble::mul_add(z, r, DoubleDouble::from_bit_pair(c[3]));
534    z = DoubleDouble::mul_add(z, r, DoubleDouble::from_bit_pair(c[2]));
535    z = DoubleDouble::mul_add(z, r, DoubleDouble::from_bit_pair(c[1]));
536    z = DoubleDouble::mul_add(z, r, DoubleDouble::from_bit_pair(c[0]));
537    let err = f_fmla(
538        z.hi,
539        f64::from_bits(0x3c70000000000000), // 2^-56
540        f64::from_bits(0x3bf0000000000000), // 2^-64
541    );
542    let ub = z.hi + (z.lo + err);
543    let lb = z.hi + (z.lo - err);
544
545    if ub == lb {
546        return z.to_f64() * sign_scale;
547    }
548
549    j1_small_argument_dd(sign_scale, r, c)
550}
551
552fn j1_small_argument_dd(sign_scale: f64, r: DoubleDouble, c0: &[(u64, u64); 24]) -> f64 {
553    let c = &c0[15..];
554
555    let p0 = f_polyeval9(
556        r.to_f64(),
557        f64::from_bits(c[0].1),
558        f64::from_bits(c[1].1),
559        f64::from_bits(c[2].1),
560        f64::from_bits(c[3].1),
561        f64::from_bits(c[4].1),
562        f64::from_bits(c[5].1),
563        f64::from_bits(c[6].1),
564        f64::from_bits(c[7].1),
565        f64::from_bits(c[8].1),
566    );
567
568    let c = c0;
569
570    let mut p_e = DoubleDouble::mul_f64_add(r, p0, DoubleDouble::from_bit_pair(c[14]));
571    p_e = DoubleDouble::mul_add(p_e, r, DoubleDouble::from_bit_pair(c[13]));
572    p_e = DoubleDouble::mul_add(p_e, r, DoubleDouble::from_bit_pair(c[12]));
573    p_e = DoubleDouble::mul_add(p_e, r, DoubleDouble::from_bit_pair(c[11]));
574    p_e = DoubleDouble::mul_add(p_e, r, DoubleDouble::from_bit_pair(c[10]));
575    p_e = DoubleDouble::mul_add(p_e, r, DoubleDouble::from_bit_pair(c[9]));
576    p_e = DoubleDouble::mul_add(p_e, r, DoubleDouble::from_bit_pair(c[8]));
577    p_e = DoubleDouble::mul_add(p_e, r, DoubleDouble::from_bit_pair(c[7]));
578    p_e = DoubleDouble::mul_add(p_e, r, DoubleDouble::from_bit_pair(c[6]));
579    p_e = DoubleDouble::mul_add(p_e, r, DoubleDouble::from_bit_pair(c[5]));
580    p_e = DoubleDouble::mul_add(p_e, r, DoubleDouble::from_bit_pair(c[4]));
581    p_e = DoubleDouble::mul_add(p_e, r, DoubleDouble::from_bit_pair(c[3]));
582    p_e = DoubleDouble::mul_add(p_e, r, DoubleDouble::from_bit_pair(c[2]));
583    p_e = DoubleDouble::mul_add(p_e, r, DoubleDouble::from_bit_pair(c[1]));
584    p_e = DoubleDouble::mul_add(p_e, r, DoubleDouble::from_bit_pair(c[0]));
585
586    let p = DoubleDouble::from_exact_add(p_e.hi, p_e.lo);
587    let err = f_fmla(
588        p.hi,
589        f64::from_bits(0x3c10000000000000), // 2^-62
590        f64::from_bits(0x3a00000000000000), // 2^-95
591    );
592    let ub = p.hi + (p.lo + err);
593    let lb = p.hi + (p.lo - err);
594    if ub != lb {
595        return j1_small_argument_path_hard(sign_scale, r, c);
596    }
597    p.to_f64() * sign_scale
598}
599
600#[cold]
601#[inline(never)]
602fn j1_small_argument_path_hard(sign_scale: f64, r: DoubleDouble, c: &[(u64, u64); 24]) -> f64 {
603    let mut p = DoubleDouble::from_bit_pair(c[23]);
604    for i in (0..23).rev() {
605        p = DoubleDouble::mul_add(r, p, DoubleDouble::from_bit_pair(c[i]));
606        p = DoubleDouble::from_exact_add(p.hi, p.lo);
607    }
608    p.to_f64() * sign_scale
609}
610
611/*
612   Evaluates:
613   J1 = sqrt(2/(PI*x)) * beta(x) * cos(x - 3*PI/4 - alpha(x))
614   discarding 1*PI/2 using identities gives:
615   J1 = sqrt(2/(PI*x)) * beta(x) * sin(x - PI/4 - alpha(x))
616
617   to avoid squashing small (-PI/4 - alpha(x)) into a large x actual expansion is:
618
619   J1 = sqrt(2/(PI*x)) * beta(x) * sin((x mod 2*PI) - PI/4 - alpha(x))
620
621   This method is required for situations where x*x or 1/(x*x) will overflow
622*/
623#[cold]
624#[inline(never)]
625fn j1_asympt_hard(x: f64) -> f64 {
626    static SGN: [f64; 2] = [1., -1.];
627    let sign_scale = SGN[x.is_sign_negative() as usize];
628    let x = x.abs();
629
630    const SQRT_2_OVER_PI: DyadicFloat128 = DyadicFloat128 {
631        sign: DyadicSign::Pos,
632        exponent: -128,
633        mantissa: 0xcc42299e_a1b28468_7e59e280_5d5c7180_u128,
634    };
635
636    const MPI_OVER_4: DyadicFloat128 = DyadicFloat128 {
637        sign: DyadicSign::Neg,
638        exponent: -128,
639        mantissa: 0xc90fdaa2_2168c234_c4c6628b_80dc1cd1_u128,
640    };
641
642    let x_dyadic = DyadicFloat128::new_from_f64(x);
643    let recip = DyadicFloat128::accurate_reciprocal(x);
644
645    let alpha = bessel_1_asympt_alpha_hard(recip);
646    let beta = bessel_1_asympt_beta_hard(recip);
647
648    let angle = rem2pi_f128(x_dyadic);
649
650    let x0pi34 = MPI_OVER_4 - alpha;
651    let r0 = angle + x0pi34;
652
653    let m_sin = sin_f128_small(r0);
654
655    let z0 = beta * m_sin;
656    let r_sqrt = bessel_rsqrt_hard(x, recip);
657    let scale = SQRT_2_OVER_PI * r_sqrt;
658    let p = scale * z0;
659    p.fast_as_f64() * sign_scale
660}
661
662#[cfg(test)]
663mod tests {
664    use super::*;
665
666    #[test]
667    fn test_j1() {
668        assert_eq!(f_j1(0.000000000000000000000000000000001241), 6.205e-34);
669        assert_eq!(f_j1(0.0000000000000000000000000000004321), 2.1605e-31);
670        assert_eq!(f_j1(0.00000000000000000004321), 2.1605e-20);
671        assert_eq!(f_j1(73.81695991658546), -0.06531447184607607);
672        assert_eq!(f_j1(0.01), 0.004999937500260416);
673        assert_eq!(f_j1(0.9), 0.4059495460788057);
674        assert_eq!(
675            f_j1(162605674999778540000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.),
676            0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000008686943178258183
677        );
678        assert_eq!(f_j1(3.831705970207517), -1.8501090915423025e-15);
679        assert_eq!(f_j1(-3.831705970207517), 1.8501090915423025e-15);
680        assert_eq!(f_j1(-6.1795701510782757E+307), 8.130935041593236e-155);
681        assert_eq!(
682            f_j1(0.000000000000000000000000000000000000008827127),
683            0.0000000000000000000000000000000000000044135635
684        );
685        assert_eq!(
686            f_j1(-0.000000000000000000000000000000000000008827127),
687            -0.0000000000000000000000000000000000000044135635
688        );
689        assert_eq!(f_j1(5.4), -0.3453447907795863);
690        assert_eq!(
691            f_j1(77.743162408196766932633181568235159),
692            0.09049267898021947
693        );
694        assert_eq!(
695            f_j1(84.027189586293545175976760219782591),
696            0.0870430264022591
697        );
698        assert_eq!(f_j1(f64::NEG_INFINITY), 0.0);
699        assert_eq!(f_j1(f64::INFINITY), 0.0);
700        assert!(f_j1(f64::NAN).is_nan());
701    }
702}