pxfm/bessel/
i1ef.rs

1/*
2 * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved.
3 * //
4 * // Redistribution and use in source and binary forms, with or without modification,
5 * // are permitted provided that the following conditions are met:
6 * //
7 * // 1.  Redistributions of source code must retain the above copyright notice, this
8 * // list of conditions and the following disclaimer.
9 * //
10 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11 * // this list of conditions and the following disclaimer in the documentation
12 * // and/or other materials provided with the distribution.
13 * //
14 * // 3.  Neither the name of the copyright holder nor the names of its
15 * // contributors may be used to endorse or promote products derived from
16 * // this software without specific prior written permission.
17 * //
18 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29use crate::bessel::j0f::j1f_rsqrt;
30use crate::common::f_fmla;
31use crate::exponents::core_expf;
32use crate::polyeval::{f_estrin_polyeval7, f_estrin_polyeval9, f_polyeval10};
33
34/// Modified exponentially scaled Bessel of the first kind of order 1
35///
36/// Computes exp(-|x|)*I1(x)
37///
38/// Max ULP 0.5
39pub fn f_i1ef(x: f32) -> f32 {
40    let ux = x.to_bits().wrapping_shl(1);
41    if ux >= 0xffu32 << 24 || ux == 0 {
42        // |x| == 0, |x| == inf, x == NaN
43        if ux == 0 {
44            // |x| == 0
45            return 0.;
46        }
47        if x.is_infinite() {
48            return if x.is_sign_positive() { 0. } else { -0. };
49        }
50        return x + f32::NAN; // |x| == NaN
51    }
52
53    let xb = x.to_bits() & 0x7fff_ffff;
54
55    static SIGN: [f64; 2] = [1., -1.];
56
57    let sign_scale = SIGN[x.is_sign_negative() as usize];
58
59    if xb <= 0x40f80000u32 {
60        // |x| <= 7.75
61        let core_expf = core_expf(-f32::from_bits(xb));
62        if xb <= 0x34000000u32 {
63            // |x| <= f32::EPSILON
64            // taylor series for I1(x)/Exp(x) ~ x/2 - x^2/2 + O(x^3)
65            #[cfg(any(
66                all(
67                    any(target_arch = "x86", target_arch = "x86_64"),
68                    target_feature = "fma"
69                ),
70                all(target_arch = "aarch64", target_feature = "neon")
71            ))]
72            {
73                use crate::common::f_fmlaf;
74                let half_x = 0.5 * x;
75                return f_fmlaf(x, -half_x, half_x);
76            }
77            #[cfg(not(any(
78                all(
79                    any(target_arch = "x86", target_arch = "x86_64"),
80                    target_feature = "fma"
81                ),
82                all(target_arch = "aarch64", target_feature = "neon")
83            )))]
84            {
85                let dx = x as f64;
86                let half_x = 0.5 * dx;
87                return f_fmla(dx, -half_x, half_x) as f32;
88            }
89        }
90        return i1ef_small(f32::from_bits(xb), sign_scale, core_expf) as f32;
91    }
92
93    i1ef_asympt(f32::from_bits(xb), sign_scale)
94}
95
96/**
97Computes
98I1(x) = x/2 * (1 + 1 * (x/2)^2 + (x/2)^4 * P((x/2)^2))
99
100Generated by Woflram Mathematica:
101
102```text
103<<FunctionApproximations`
104ClearAll["Global`*"]
105f[x_]:=(BesselI[1,x]*2/x-1-1/2(x/2)^2)/(x/2)^4
106g[z_]:=f[2 Sqrt[z]]
107{err, approx}=MiniMaxApproximation[g[z],{z,{0.000000001,7.75},6,6},WorkingPrecision->60]
108poly=Numerator[approx][[1]];
109coeffs=CoefficientList[poly,z];
110TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
111poly=Denominator[approx][[1]];
112coeffs=CoefficientList[poly,z];
113TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
114```
115**/
116#[inline]
117fn i1ef_small(x: f32, sign_scale: f64, core_expf: f64) -> f64 {
118    let dx = x as f64;
119    let x_over_two = dx * 0.5;
120    let x_over_two_sqr = x_over_two * x_over_two;
121    let x_over_two_p4 = x_over_two_sqr * x_over_two_sqr;
122
123    let p_num = f_estrin_polyeval7(
124        x_over_two_sqr,
125        f64::from_bits(0x3fb5555555555555),
126        f64::from_bits(0x3f706cdccca396c4),
127        f64::from_bits(0x3f23f9e12bdbba92),
128        f64::from_bits(0x3ec8e39208e926b2),
129        f64::from_bits(0x3e62e53b433c42ff),
130        f64::from_bits(0x3def7cb16d10fb46),
131        f64::from_bits(0x3d6747cd73d9d783),
132    );
133    let p_den = f_estrin_polyeval7(
134        x_over_two_sqr,
135        f64::from_bits(0x3ff0000000000000),
136        f64::from_bits(0xbfa2075f77b54885),
137        f64::from_bits(0x3f438c6d797c29f5),
138        f64::from_bits(0xbeda57e2a258c6da),
139        f64::from_bits(0x3e677e777c569432),
140        f64::from_bits(0xbdea9212a96babc1),
141        f64::from_bits(0x3d5e183186d5d782),
142    );
143    let p = p_num / p_den;
144
145    let p1 = f_fmla(0.5, x_over_two_sqr, 1.);
146    let p2 = f_fmla(x_over_two_p4, p, p1);
147    p2 * x_over_two * sign_scale * core_expf
148}
149
150/**
151Asymptotic expansion for I1.
152
153Computes:
154sqrt(x) * exp(-x) * I1(x) = Pn(1/x)/Qn(1/x)
155hence:
156I1(x)*exp(-x) = Pn(1/x)/Qm(1/x)/sqrt(x)
157
158Generated by Wolfram Mathematica:
159```text
160<<FunctionApproximations`
161ClearAll["Global`*"]
162f[x_]:=Sqrt[x] Exp[-x] BesselI[1,x]
163g[z_]:=f[1/z]
164{err,approx}=MiniMaxApproximation[g[z],{z,{2^-33,1/7.75},9,8},WorkingPrecision->60]
165poly=Numerator[approx][[1]];
166coeffs=CoefficientList[poly,z];
167TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50},ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
168poly=Denominator[approx][[1]];
169coeffs=CoefficientList[poly,z];
170TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50},ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
171```
172**/
173#[inline]
174fn i1ef_asympt(x: f32, sign_scale: f64) -> f32 {
175    let dx = x as f64;
176    let recip = 1. / dx;
177    let p_num = f_polyeval10(
178        recip,
179        f64::from_bits(0x3fd9884533d43652),
180        f64::from_bits(0xc030686a3694d13c),
181        f64::from_bits(0x407344697f45c2ee),
182        f64::from_bits(0xc0aa037ee36a8967),
183        f64::from_bits(0x40d5b2eab8cf5b17),
184        f64::from_bits(0xc0f65addf81dbee8),
185        f64::from_bits(0x410afc22ec1f9b8b),
186        f64::from_bits(0xc110821dd0fc12b4),
187        f64::from_bits(0x40feb3452c93aada),
188        f64::from_bits(0xc0c6d04e8c5d02f3),
189    );
190    let p_den = f_estrin_polyeval9(
191        recip,
192        f64::from_bits(0x3ff0000000000000),
193        f64::from_bits(0xc04460707a9ceed4),
194        f64::from_bits(0x4087ac89fcf51e9b),
195        f64::from_bits(0xc0bf830689f31b42),
196        f64::from_bits(0x40e9c281c367fab2),
197        f64::from_bits(0xc109b59ade76eb8c),
198        f64::from_bits(0x411d553a9f5673c5),
199        f64::from_bits(0xc11f9dbe0665523b),
200        f64::from_bits(0x4103b62a329b60d7),
201    );
202    let z = p_num / p_den;
203    let r_sqrt = j1f_rsqrt(dx);
204    (z * r_sqrt * sign_scale) as f32
205}
206
207#[cfg(test)]
208mod tests {
209    use super::*;
210
211    #[test]
212    fn test_i1ef() {
213        assert!(f_i1ef(f32::NAN).is_nan());
214        assert_eq!(f_i1ef(f32::INFINITY), 0.0);
215        assert_eq!(f_i1ef(f32::NEG_INFINITY), 0.0);
216        assert_eq!(f_i1ef(0.), 0.);
217        assert_eq!(f_i1ef(1.), 0.20791042);
218        assert_eq!(f_i1ef(-1.), -0.20791042);
219        assert_eq!(f_i1ef(9.), 0.12722498);
220        assert_eq!(f_i1ef(-9.), -0.12722498);
221        assert_eq!(f_i1ef(0.000000000543453), 2.717265e-10);
222        assert_eq!(f_i1ef(-0.000000000543453), -2.717265e-10);
223    }
224}