pxfm/bessel/beta0.rs
1/*
2 * // Copyright (c) Radzivon Bartoshyk 8/2025. All rights reserved.
3 * //
4 * // Redistribution and use in source and binary forms, with or without modification,
5 * // are permitted provided that the following conditions are met:
6 * //
7 * // 1. Redistributions of source code must retain the above copyright notice, this
8 * // list of conditions and the following disclaimer.
9 * //
10 * // 2. Redistributions in binary form must reproduce the above copyright notice,
11 * // this list of conditions and the following disclaimer in the documentation
12 * // and/or other materials provided with the distribution.
13 * //
14 * // 3. Neither the name of the copyright holder nor the names of its
15 * // contributors may be used to endorse or promote products derived from
16 * // this software without specific prior written permission.
17 * //
18 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29use crate::double_double::DoubleDouble;
30use crate::dyadic_float::{DyadicFloat128, DyadicSign};
31use crate::polyeval::f_polyeval9;
32
33/**
34Beta series
35
36Generated by SageMath:
37```python
38#generate b series
39def binomial_like(n, m):
40 prod = QQ(1)
41 z = QQ(4)*(n**2)
42 for k in range(1,m + 1):
43 prod *= (z - (2*k - 1)**2)
44 return prod / (QQ(2)**(2*m) * (ZZ(m).factorial()))
45
46R = LaurentSeriesRing(RealField(300), 'x',default_prec=300)
47x = R.gen()
48
49def Pn_asymptotic(n, y, terms=10):
50 # now y = 1/x
51 return sum( (-1)**m * binomial_like(n, 2*m) / (QQ(2)**(2*m)) * y**(QQ(2)*m) for m in range(terms) )
52
53def Qn_asymptotic(n, y, terms=10):
54 return sum( (-1)**m * binomial_like(n, 2*m + 1) / (QQ(2)**(2*m + 1)) * y**(QQ(2)*m + 1) for m in range(terms) )
55
56P = Pn_asymptotic(0, x, 50)
57Q = Qn_asymptotic(0, x, 50)
58
59def sqrt_series(s):
60 val = S.valuation()
61 lc = S[val] # Leading coefficient
62 b = lc.sqrt() * x**(val // 2)
63
64 for _ in range(5):
65 b = (b + S / b) / 2
66 b = b
67 return b
68
69S = (P**2 + Q**2).truncate(50)
70
71b_series = sqrt_series(S).truncate(30)
72#see the series
73print(b_series)
74```
75**/
76#[inline]
77pub(crate) fn bessel_0_asympt_beta(recip: DoubleDouble) -> DoubleDouble {
78 const C: [(u64, u64); 10] = [
79 (0x0000000000000000, 0x3ff0000000000000),
80 (0x0000000000000000, 0xbfb0000000000000),
81 (0x0000000000000000, 0x3fba800000000000),
82 (0x0000000000000000, 0xbfe15f0000000000),
83 (0x0000000000000000, 0x4017651180000000),
84 (0x0000000000000000, 0xc05ab8c13b800000),
85 (0x0000000000000000, 0x40a730492f262000),
86 (0x0000000000000000, 0xc0fc73a7acd696f0),
87 (0xbdf3a00000000000, 0x41577458dd9fce68),
88 (0xbe4ba6b000000000, 0xc1b903ab9b27e18f),
89 ];
90
91 // Doing (1/x)*(1/x) instead (1/(x*x)) to avoid spurious overflow/underflow
92 let x2 = DoubleDouble::quick_mult(recip, recip);
93
94 let mut p = DoubleDouble::mul_add(
95 x2,
96 DoubleDouble::from_bit_pair(C[9]),
97 DoubleDouble::from_bit_pair(C[8]),
98 );
99
100 p = DoubleDouble::mul_add_f64(x2, p, f64::from_bits(C[7].1));
101 p = DoubleDouble::mul_add_f64(x2, p, f64::from_bits(C[6].1));
102 p = DoubleDouble::mul_add_f64(x2, p, f64::from_bits(C[5].1));
103 p = DoubleDouble::mul_add_f64(x2, p, f64::from_bits(C[4].1));
104 p = DoubleDouble::mul_add_f64(x2, p, f64::from_bits(C[3].1));
105 p = DoubleDouble::mul_add_f64(x2, p, f64::from_bits(C[2].1));
106 p = DoubleDouble::mul_add_f64(x2, p, f64::from_bits(C[1].1));
107 p = DoubleDouble::mul_add_f64(x2, p, f64::from_bits(C[0].1));
108 p
109}
110
111/**
112Beta series
113
114Generated by SageMath:
115```python
116#generate b series
117def binomial_like(n, m):
118 prod = QQ(1)
119 z = QQ(4)*(n**2)
120 for k in range(1,m + 1):
121 prod *= (z - (2*k - 1)**2)
122 return prod / (QQ(2)**(2*m) * (ZZ(m).factorial()))
123
124R = LaurentSeriesRing(RealField(300), 'x',default_prec=300)
125x = R.gen()
126
127def Pn_asymptotic(n, y, terms=10):
128 # now y = 1/x
129 return sum( (-1)**m * binomial_like(n, 2*m) / (QQ(2)**(2*m)) * y**(QQ(2)*m) for m in range(terms) )
130
131def Qn_asymptotic(n, y, terms=10):
132 return sum( (-1)**m * binomial_like(n, 2*m + 1) / (QQ(2)**(2*m + 1)) * y**(QQ(2)*m + 1) for m in range(terms) )
133
134P = Pn_asymptotic(0, x, 50)
135Q = Qn_asymptotic(0, x, 50)
136
137def sqrt_series(s):
138 val = S.valuation()
139 lc = S[val] # Leading coefficient
140 b = lc.sqrt() * x**(val // 2)
141
142 for _ in range(5):
143 b = (b + S / b) / 2
144 b = b
145 return b
146
147S = (P**2 + Q**2).truncate(50)
148
149b_series = sqrt_series(S).truncate(30)
150#see the series
151print(b_series)
152```
153**/
154#[inline]
155pub(crate) fn bessel_0_asympt_beta_fast(recip: DoubleDouble) -> DoubleDouble {
156 const C: [u64; 10] = [
157 0x3ff0000000000000,
158 0xbfb0000000000000,
159 0x3fba800000000000,
160 0xbfe15f0000000000,
161 0x4017651180000000,
162 0xc05ab8c13b800000,
163 0x40a730492f262000,
164 0xc0fc73a7acd696f0,
165 0x41577458dd9fce68,
166 0xc1b903ab9b27e18f,
167 ];
168
169 // Doing (1/x)*(1/x) instead (1/(x*x)) to avoid spurious overflow/underflow
170 let x2 = DoubleDouble::quick_mult(recip, recip);
171
172 let p = f_polyeval9(
173 x2.hi,
174 f64::from_bits(C[1]),
175 f64::from_bits(C[2]),
176 f64::from_bits(C[3]),
177 f64::from_bits(C[4]),
178 f64::from_bits(C[5]),
179 f64::from_bits(C[6]),
180 f64::from_bits(C[7]),
181 f64::from_bits(C[8]),
182 f64::from_bits(C[9]),
183 );
184
185 DoubleDouble::mul_f64_add_f64(x2, p, f64::from_bits(C[0]))
186}
187
188/// see [bessel_0_asympt_beta] for more info
189pub(crate) fn bessel_0_asympt_beta_hard(recip: DyadicFloat128) -> DyadicFloat128 {
190 static C: [DyadicFloat128; 12] = [
191 DyadicFloat128 {
192 sign: DyadicSign::Pos,
193 exponent: -127,
194 mantissa: 0x80000000_00000000_00000000_00000000_u128,
195 },
196 DyadicFloat128 {
197 sign: DyadicSign::Neg,
198 exponent: -131,
199 mantissa: 0x80000000_00000000_00000000_00000000_u128,
200 },
201 DyadicFloat128 {
202 sign: DyadicSign::Pos,
203 exponent: -131,
204 mantissa: 0xd4000000_00000000_00000000_00000000_u128,
205 },
206 DyadicFloat128 {
207 sign: DyadicSign::Neg,
208 exponent: -128,
209 mantissa: 0x8af80000_00000000_00000000_00000000_u128,
210 },
211 DyadicFloat128 {
212 sign: DyadicSign::Pos,
213 exponent: -125,
214 mantissa: 0xbb288c00_00000000_00000000_00000000_u128,
215 },
216 DyadicFloat128 {
217 sign: DyadicSign::Neg,
218 exponent: -121,
219 mantissa: 0xd5c609dc_00000000_00000000_00000000_u128,
220 },
221 DyadicFloat128 {
222 sign: DyadicSign::Pos,
223 exponent: -116,
224 mantissa: 0xb9824979_31000000_00000000_00000000_u128,
225 },
226 DyadicFloat128 {
227 sign: DyadicSign::Neg,
228 exponent: -111,
229 mantissa: 0xe39d3d66_b4b78000_00000000_00000000_u128,
230 },
231 DyadicFloat128 {
232 sign: DyadicSign::Pos,
233 exponent: -105,
234 mantissa: 0xbba2c6ec_fe733d8c_00000000_00000000_u128,
235 },
236 DyadicFloat128 {
237 sign: DyadicSign::Neg,
238 exponent: -99,
239 mantissa: 0xc81d5cd9_3f0c79ba_6b000000_00000000_u128,
240 },
241 DyadicFloat128 {
242 sign: DyadicSign::Pos,
243 exponent: -92,
244 mantissa: 0x86118ddf_c1ffc100_0ee1b000_00000000_u128,
245 },
246 DyadicFloat128 {
247 sign: DyadicSign::Neg,
248 exponent: -86,
249 mantissa: 0xdc7ccfa9_930b874d_52df3464_00000000_u128,
250 },
251 ];
252
253 let x2 = recip * recip;
254
255 let mut p = C[11];
256 for i in (0..11).rev() {
257 p = x2 * p + C[i];
258 }
259 p
260}