pxfm/
asinpi.rs

1/*
2 * // Copyright (c) Radzivon Bartoshyk 6/2025. All rights reserved.
3 * //
4 * // Redistribution and use in source and binary forms, with or without modification,
5 * // are permitted provided that the following conditions are met:
6 * //
7 * // 1.  Redistributions of source code must retain the above copyright notice, this
8 * // list of conditions and the following disclaimer.
9 * //
10 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11 * // this list of conditions and the following disclaimer in the documentation
12 * // and/or other materials provided with the distribution.
13 * //
14 * // 3.  Neither the name of the copyright holder nor the names of its
15 * // contributors may be used to endorse or promote products derived from
16 * // this software without specific prior written permission.
17 * //
18 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29use crate::acospi::INV_PI_DD;
30use crate::asin::asin_eval;
31use crate::asin_eval_dyadic::asin_eval_dyadic;
32use crate::common::{dd_fmla, dyad_fmla, f_fmla};
33use crate::double_double::DoubleDouble;
34use crate::dyadic_float::{DyadicFloat128, DyadicSign};
35use crate::round::RoundFinite;
36
37/// Computes asin(x)/PI
38///
39/// Max found ULP 0.5
40pub fn f_asinpi(x: f64) -> f64 {
41    let x_e = (x.to_bits() >> 52) & 0x7ff;
42    const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64;
43
44    let x_abs = f64::from_bits(x.to_bits() & 0x7fff_ffff_ffff_ffff);
45
46    // |x| < 0.5.
47    if x_e < E_BIAS - 1 {
48        // |x| < 2^-26.
49        if x_e < E_BIAS - 26 {
50            // When |x| < 2^-26, the relative error of the approximation asin(x) ~ x
51            // is:
52            //   |asin(x) - x| / |asin(x)| < |x^3| / (6|x|)
53            //                             = x^2 / 6
54            //                             < 2^-54
55            //                             < epsilon(1)/2.
56            //   = x otherwise. ,
57            if x.abs() == 0. {
58                return x;
59            }
60
61            if x_e < E_BIAS - 56 {
62                if (x_abs.to_bits().wrapping_shl(12)) == 0x59af9a1194efe000u64 {
63                    let e = (x.to_bits() >> 52) & 0x7ff;
64                    let h = f64::from_bits(0x3c7b824198b94a89);
65                    let l = f64::from_bits(0x391fffffffffffff);
66                    let mut t = (if x > 0. { 1.0f64 } else { -1.0f64 }).to_bits();
67                    t = t.wrapping_sub(0x3c9u64.wrapping_sub(e).wrapping_shl(52));
68                    return f_fmla(l, f64::from_bits(t), h * f64::from_bits(t));
69                }
70
71                let h = x * INV_PI_DD.hi;
72                let sx = x * f64::from_bits(0x4690000000000000); /* scale x */
73                let mut l = dd_fmla(sx, INV_PI_DD.hi, -h * f64::from_bits(0x4690000000000000));
74                l = dd_fmla(sx, INV_PI_DD.lo, l);
75                /* scale back */
76                let res = dyad_fmla(l, f64::from_bits(0x3950000000000000), h);
77                return res;
78            }
79
80            /* We use the Sollya polynomial 0x1.45f306dc9c882a53f84eafa3ea4p-2 * x
81            + 0x1.b2995e7b7b606p-5 * x^3, with relative error bounded by 2^-106.965
82            on [2^-53, 2^-26] */
83            const C1H: f64 = f64::from_bits(0x3fd45f306dc9c883);
84            const C1L: f64 = f64::from_bits(0xbc76b01ec5417057);
85            const C3: f64 = f64::from_bits(0x3fab2995e7b7b606);
86            let h = C1H;
87            let l = dd_fmla(C3, x * x, C1L);
88            /* multiply h+l by x */
89            let hh = h * x;
90            let mut ll = dd_fmla(h, x, -hh);
91            /* hh+ll = h*x */
92            ll = dd_fmla(l, x, ll);
93            return hh + ll;
94        }
95
96        let x_sq = DoubleDouble::from_exact_mult(x, x);
97        let err = x_abs * f64::from_bits(0x3cc0000000000000);
98        // Polynomial approximation:
99        //   p ~ asin(x)/x
100
101        let (p, err) = asin_eval(x_sq, err);
102        // asin(x) ~ x * (ASIN_COEFFS[idx][0] + p)
103        let mut r0 = DoubleDouble::from_exact_mult(x, p.hi);
104        let mut r_lo = f_fmla(x, p.lo, r0.lo);
105
106        r0 = DoubleDouble::mult(DoubleDouble::new(r_lo, r0.hi), INV_PI_DD);
107        r_lo = r0.lo;
108
109        let r_upper = r0.hi + (r_lo + err);
110        let r_lower = r0.hi + (r_lo - err);
111
112        if r_upper == r_lower {
113            return r_upper;
114        }
115
116        // Ziv's accuracy test failed, perform 128-bit calculation.
117
118        // Recalculate mod 1/64.
119        let idx = (x_sq.hi * f64::from_bits(0x4050000000000000)).round_finite() as usize;
120
121        // Get x^2 - idx/64 exactly.  When FMA is available, double-double
122        // multiplication will be correct for all rounding modes. Otherwise, we use
123        // Float128 directly.
124        let x_f128 = DyadicFloat128::new_from_f64(x);
125
126        let u: DyadicFloat128;
127        #[cfg(any(
128            all(
129                any(target_arch = "x86", target_arch = "x86_64"),
130                target_feature = "fma"
131            ),
132            all(target_arch = "aarch64", target_feature = "neon")
133        ))]
134        {
135            // u = x^2 - idx/64
136            let u_hi = DyadicFloat128::new_from_f64(f_fmla(
137                idx as f64,
138                f64::from_bits(0xbf90000000000000),
139                x_sq.hi,
140            ));
141            u = u_hi.quick_add(&DyadicFloat128::new_from_f64(x_sq.lo));
142        }
143
144        #[cfg(not(any(
145            all(
146                any(target_arch = "x86", target_arch = "x86_64"),
147                target_feature = "fma"
148            ),
149            all(target_arch = "aarch64", target_feature = "neon")
150        )))]
151        {
152            let x_sq_f128 = x_f128.quick_mul(&x_f128);
153            u = x_sq_f128.quick_add(&DyadicFloat128::new_from_f64(
154                idx as f64 * (f64::from_bits(0xbf90000000000000)),
155            ));
156        }
157
158        let p_f128 = asin_eval_dyadic(u, idx);
159        let mut r = x_f128.quick_mul(&p_f128);
160        r = r.quick_mul(&crate::acospi::INV_PI_F128);
161        return r.fast_as_f64();
162    }
163
164    const PI_OVER_TWO: DoubleDouble = DoubleDouble::new(
165        f64::from_bits(0x3c91a62633145c07),
166        f64::from_bits(0x3ff921fb54442d18),
167    );
168
169    let x_sign = if x.is_sign_negative() { -1.0 } else { 1.0 };
170
171    // |x| >= 1
172    if x_e >= E_BIAS {
173        // x = +-1, asin(x) = +- pi/2
174        if x_abs == 1.0 {
175            // return +- pi/2
176            return x * 0.5; // asinpi_specific
177        }
178        // |x| > 1, return NaN.
179        if x.is_nan() {
180            return x;
181        }
182        return f64::NAN;
183    }
184
185    // u = (1 - |x|)/2
186    let u = f_fmla(x_abs, -0.5, 0.5);
187    // v_hi + v_lo ~ sqrt(u).
188    // Let:
189    //   h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi)
190    // Then:
191    //   sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
192    //           ~ v_hi + h / (2 * v_hi)
193    // So we can use:
194    //   v_lo = h / (2 * v_hi).
195    // Then,
196    //   asin(x) ~ pi/2 - 2*(v_hi + v_lo) * P(u)
197    let v_hi = u.sqrt();
198    let h;
199    #[cfg(any(
200        all(
201            any(target_arch = "x86", target_arch = "x86_64"),
202            target_feature = "fma"
203        ),
204        all(target_arch = "aarch64", target_feature = "neon")
205    ))]
206    {
207        h = f_fmla(v_hi, -v_hi, u);
208    }
209    #[cfg(not(any(
210        all(
211            any(target_arch = "x86", target_arch = "x86_64"),
212            target_feature = "fma"
213        ),
214        all(target_arch = "aarch64", target_feature = "neon")
215    )))]
216    {
217        let v_hi_sq = DoubleDouble::from_exact_mult(v_hi, v_hi);
218        h = (u - v_hi_sq.hi) - v_hi_sq.lo;
219    }
220    // Scale v_lo and v_hi by 2 from the formula:
221    //   vh = v_hi * 2
222    //   vl = 2*v_lo = h / v_hi.
223    let vh = v_hi * 2.0;
224    let vl = h / v_hi;
225
226    // Polynomial approximation:
227    //   p ~ asin(sqrt(u))/sqrt(u)
228    let err = vh * f64::from_bits(0x3cc0000000000000);
229
230    let (p, err) = asin_eval(DoubleDouble::new(0.0, u), err);
231
232    // Perform computations in double-double arithmetic:
233    //   asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p)
234    let r0 = DoubleDouble::quick_mult(DoubleDouble::new(vl, vh), p);
235    let mut r = DoubleDouble::from_exact_add(PI_OVER_TWO.hi, -r0.hi);
236
237    let mut r_lo = PI_OVER_TWO.lo - r0.lo + r.lo;
238
239    let p = DoubleDouble::mult(DoubleDouble::new(r_lo, r.hi), INV_PI_DD);
240    r_lo = p.lo;
241    r.hi = p.hi;
242
243    let (r_upper, r_lower);
244
245    #[cfg(any(
246        all(
247            any(target_arch = "x86", target_arch = "x86_64"),
248            target_feature = "fma"
249        ),
250        all(target_arch = "aarch64", target_feature = "neon")
251    ))]
252    {
253        r_upper = f_fmla(r.hi, x_sign, f_fmla(r_lo, x_sign, err));
254        r_lower = f_fmla(r.hi, x_sign, f_fmla(r_lo, x_sign, -err));
255    }
256    #[cfg(not(any(
257        all(
258            any(target_arch = "x86", target_arch = "x86_64"),
259            target_feature = "fma"
260        ),
261        all(target_arch = "aarch64", target_feature = "neon")
262    )))]
263    {
264        let r_lo = r_lo * x_sign;
265        let r_hi = r.hi * x_sign;
266        r_upper = r_hi + (r_lo + err);
267        r_lower = r.hi + (r_lo - err);
268    }
269
270    if r_upper == r_lower {
271        return r_upper;
272    }
273
274    // Ziv's accuracy test failed, we redo the computations in Float128.
275    // Recalculate mod 1/64.
276    let idx = (u * f64::from_bits(0x4050000000000000)).round_finite() as usize;
277
278    // After the first step of Newton-Raphson approximating v = sqrt(u), we have
279    // that:
280    //   sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
281    //      v_lo = h / (2 * v_hi)
282    // With error:
283    //   sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) )
284    //                           = -h^2 / (2*v * (sqrt(u) + v)^2).
285    // Since:
286    //   (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u,
287    // we can add another correction term to (v_hi + v_lo) that is:
288    //   v_ll = -h^2 / (2*v_hi * 4u)
289    //        = -v_lo * (h / 4u)
290    //        = -vl * (h / 8u),
291    // making the errors:
292    //   sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3)
293    // well beyond 128-bit precision needed.
294
295    // Get the rounding error of vl = 2 * v_lo ~ h / vh
296    // Get full product of vh * vl
297    let vl_lo;
298    #[cfg(any(
299        all(
300            any(target_arch = "x86", target_arch = "x86_64"),
301            target_feature = "fma"
302        ),
303        all(target_arch = "aarch64", target_feature = "neon")
304    ))]
305    {
306        vl_lo = f_fmla(-v_hi, vl, h) / v_hi;
307    }
308    #[cfg(not(any(
309        all(
310            any(target_arch = "x86", target_arch = "x86_64"),
311            target_feature = "fma"
312        ),
313        all(target_arch = "aarch64", target_feature = "neon")
314    )))]
315    {
316        let vh_vl = DoubleDouble::from_exact_mult(v_hi, vl);
317        vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi;
318    }
319
320    // vll = 2*v_ll = -vl * (h / (4u)).
321    let t = h * (-0.25) / u;
322    let vll = f_fmla(vl, t, vl_lo);
323    // m_v = -(v_hi + v_lo + v_ll).
324    let mv0 = DyadicFloat128::new_from_f64(vl) + DyadicFloat128::new_from_f64(vll);
325    let mut m_v = DyadicFloat128::new_from_f64(vh) + mv0;
326    m_v.sign = DyadicSign::Neg;
327
328    // Perform computations in Float128:
329    //   asin(x) = pi/2 - (v_hi + v_lo + vll) * P(u).
330    let y_f128 =
331        DyadicFloat128::new_from_f64(f_fmla(idx as f64, f64::from_bits(0xbf90000000000000), u));
332
333    const PI_OVER_TWO_F128: DyadicFloat128 = DyadicFloat128 {
334        sign: DyadicSign::Pos,
335        exponent: -127,
336        mantissa: 0xc90fdaa2_2168c234_c4c6628b_80dc1cd1_u128,
337    };
338
339    let p_f128 = asin_eval_dyadic(y_f128, idx);
340    let r0_f128 = m_v * p_f128;
341    let mut r_f128 = PI_OVER_TWO_F128 + r0_f128;
342
343    if x.is_sign_negative() {
344        r_f128.sign = DyadicSign::Neg;
345    }
346
347    r_f128 = r_f128.quick_mul(&crate::acospi::INV_PI_F128);
348
349    r_f128.fast_as_f64()
350}
351
352#[cfg(test)]
353mod tests {
354    use super::*;
355
356    #[test]
357    fn f_asinpi_test() {
358        assert_eq!(
359            f_asinpi(-0.00000000032681723993732703),
360            -0.00000000010402915844735117
361        );
362        assert_eq!(f_asinpi(0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000017801371778309684), 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005666352624669099);
363        assert_eq!(f_asinpi(0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000026752519513526076), 0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000008515591441480124);
364        assert_eq!(f_asinpi(-0.4), -0.13098988043445461);
365        assert_eq!(f_asinpi(-0.8), -0.2951672353008666);
366        assert_eq!(f_asinpi(0.4332432142124432), 0.14263088583055605);
367        assert_eq!(f_asinpi(0.8543543534343434), 0.326047108714517);
368        assert_eq!(f_asinpi(0.00323146509843243), 0.0010286090778797426);
369    }
370}