pxfm/acospi.rs
1/*
2 * // Copyright (c) Radzivon Bartoshyk 6/2025. All rights reserved.
3 * //
4 * // Redistribution and use in source and binary forms, with or without modification,
5 * // are permitted provided that the following conditions are met:
6 * //
7 * // 1. Redistributions of source code must retain the above copyright notice, this
8 * // list of conditions and the following disclaimer.
9 * //
10 * // 2. Redistributions in binary form must reproduce the above copyright notice,
11 * // this list of conditions and the following disclaimer in the documentation
12 * // and/or other materials provided with the distribution.
13 * //
14 * // 3. Neither the name of the copyright holder nor the names of its
15 * // contributors may be used to endorse or promote products derived from
16 * // this software without specific prior written permission.
17 * //
18 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29use crate::asin::asin_eval;
30use crate::asin_eval_dyadic::asin_eval_dyadic;
31use crate::common::f_fmla;
32use crate::double_double::DoubleDouble;
33use crate::dyadic_float::{DyadicFloat128, DyadicSign};
34use crate::round::RoundFinite;
35
36pub(crate) const INV_PI_DD: DoubleDouble = DoubleDouble::new(
37 f64::from_bits(0xbc76b01ec5417056),
38 f64::from_bits(0x3fd45f306dc9c883),
39);
40
41// 1/PI with 128-bit precision generated by SageMath with:
42// def format_hex(value):
43// l = hex(value)[2:]
44// n = 8
45// x = [l[i:i + n] for i in range(0, len(l), n)]
46// return "0x" + "'".join(x) + "_u128"
47// r = 1/pi
48// (s, m, e) = RealField(128)(r).sign_mantissa_exponent();
49// print(format_hex(m));
50pub(crate) const INV_PI_F128: DyadicFloat128 = DyadicFloat128 {
51 sign: DyadicSign::Pos,
52 exponent: -129,
53 mantissa: 0xa2f9836e_4e441529_fc2757d1_f534ddc1_u128,
54};
55
56pub(crate) const PI_OVER_TWO_F128: DyadicFloat128 = DyadicFloat128 {
57 sign: DyadicSign::Pos,
58 exponent: -127,
59 mantissa: 0xc90fdaa2_2168c234_c4c6628b_80dc1cd1_u128,
60};
61
62/// Computes acos(x)/PI
63///
64/// Max ULP 0.5
65pub fn f_acospi(x: f64) -> f64 {
66 let x_e = (x.to_bits() >> 52) & 0x7ff;
67 const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64;
68
69 const PI_OVER_TWO: DoubleDouble = DoubleDouble::new(
70 f64::from_bits(0x3c91a62633145c07),
71 f64::from_bits(0x3ff921fb54442d18),
72 );
73
74 let x_abs = f64::from_bits(x.to_bits() & 0x7fff_ffff_ffff_ffff);
75
76 // |x| < 0.5.
77 if x_e < E_BIAS - 1 {
78 // |x| < 2^-55.
79 if x_e < E_BIAS - 55 {
80 // When |x| < 2^-55, acos(x) = pi/2
81 return f_fmla(f64::from_bits(0xbc80000000000000), x, 0.5);
82 }
83
84 let x_sq = DoubleDouble::from_exact_mult(x, x);
85 let err = x_abs * f64::from_bits(0x3cc0000000000000);
86 // Polynomial approximation:
87 // p ~ asin(x)/x
88 let (p, err) = asin_eval(x_sq, err);
89 // asin(x) ~ x * p
90 let r0 = DoubleDouble::from_exact_mult(x, p.hi);
91 // acos(x) = pi/2 - asin(x)
92 // ~ pi/2 - x * p
93 // = pi/2 - x * (p.hi + p.lo)
94 let mut r_hi = f_fmla(-x, p.hi, PI_OVER_TWO.hi);
95 // Use Dekker's 2SUM algorithm to compute the lower part.
96 let mut r_lo = ((PI_OVER_TWO.hi - r_hi) - r0.hi) - r0.lo;
97 r_lo = f_fmla(-x, p.lo, r_lo + PI_OVER_TWO.lo);
98
99 let p = DoubleDouble::mult(DoubleDouble::new(r_lo, r_hi), INV_PI_DD);
100 r_hi = p.hi;
101 r_lo = p.lo;
102
103 let r_upper = r_hi + (r_lo + err);
104 let r_lower = r_hi + (r_lo - err);
105
106 if r_upper == r_lower {
107 return r_upper;
108 }
109
110 // Ziv's accuracy test failed, perform 128-bit calculation.
111
112 // Recalculate mod 1/64.
113 let idx = (x_sq.hi * f64::from_bits(0x4050000000000000)).round_finite() as usize;
114
115 // Get x^2 - idx/64 exactly. When FMA is available, double-double
116 // multiplication will be correct for all rounding modes. Otherwise, we use
117 // Float128 directly.
118 let mut x_f128 = DyadicFloat128::new_from_f64(x);
119
120 let u: DyadicFloat128;
121 #[cfg(any(
122 all(
123 any(target_arch = "x86", target_arch = "x86_64"),
124 target_feature = "fma"
125 ),
126 all(target_arch = "aarch64", target_feature = "neon")
127 ))]
128 {
129 // u = x^2 - idx/64
130 let u_hi = DyadicFloat128::new_from_f64(f_fmla(
131 idx as f64,
132 f64::from_bits(0xbf90000000000000),
133 x_sq.hi,
134 ));
135 u = u_hi.quick_add(&DyadicFloat128::new_from_f64(x_sq.lo));
136 }
137
138 #[cfg(not(any(
139 all(
140 any(target_arch = "x86", target_arch = "x86_64"),
141 target_feature = "fma"
142 ),
143 all(target_arch = "aarch64", target_feature = "neon")
144 )))]
145 {
146 let x_sq_f128 = x_f128.quick_mul(&x_f128);
147 u = x_sq_f128.quick_add(&DyadicFloat128::new_from_f64(
148 idx as f64 * f64::from_bits(0xbf90000000000000),
149 ));
150 }
151
152 let p_f128 = asin_eval_dyadic(u, idx);
153 // Flip the sign of x_f128 to perform subtraction.
154 x_f128.sign = x_f128.sign.negate();
155 let mut r = PI_OVER_TWO_F128.quick_add(&x_f128.quick_mul(&p_f128));
156 r = r.quick_mul(&INV_PI_F128);
157 return r.fast_as_f64();
158 }
159
160 // |x| >= 0.5
161
162 const PI: DoubleDouble = DoubleDouble::new(
163 f64::from_bits(0x3ca1a62633145c07),
164 f64::from_bits(0x400921fb54442d18),
165 );
166
167 // |x| >= 1
168 if x_e >= E_BIAS {
169 // x = +-1, asin(x) = +- pi/2
170 if x_abs == 1.0 {
171 // x = 1, acos(x) = 0,
172 // x = -1, acos(x) = pi
173 return if x == 1.0 { 0.0 } else { 1.0 };
174 }
175 // |x| > 1, return NaN.
176 return f64::NAN;
177 }
178
179 // When |x| >= 0.5, we perform range reduction as follow:
180 //
181 // When 0.5 <= x < 1, let:
182 // y = acos(x)
183 // We will use the double angle formula:
184 // cos(2y) = 1 - 2 sin^2(y)
185 // and the complement angle identity:
186 // x = cos(y) = 1 - 2 sin^2 (y/2)
187 // So:
188 // sin(y/2) = sqrt( (1 - x)/2 )
189 // And hence:
190 // y/2 = asin( sqrt( (1 - x)/2 ) )
191 // Equivalently:
192 // acos(x) = y = 2 * asin( sqrt( (1 - x)/2 ) )
193 // Let u = (1 - x)/2, then:
194 // acos(x) = 2 * asin( sqrt(u) )
195 // Moreover, since 0.5 <= x < 1:
196 // 0 < u <= 1/4, and 0 < sqrt(u) <= 0.5,
197 // And hence we can reuse the same polynomial approximation of asin(x) when
198 // |x| <= 0.5:
199 // acos(x) ~ 2 * sqrt(u) * P(u).
200 //
201 // When -1 < x <= -0.5, we reduce to the previous case using the formula:
202 // acos(x) = pi - acos(-x)
203 // = pi - 2 * asin ( sqrt( (1 + x)/2 ) )
204 // ~ pi - 2 * sqrt(u) * P(u),
205 // where u = (1 - |x|)/2.
206
207 // u = (1 - |x|)/2
208 let u = f_fmla(x_abs, -0.5, 0.5);
209 // v_hi + v_lo ~ sqrt(u).
210 // Let:
211 // h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi)
212 // Then:
213 // sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
214 // ~ v_hi + h / (2 * v_hi)
215 // So we can use:
216 // v_lo = h / (2 * v_hi).
217 let v_hi = u.sqrt();
218
219 let h;
220 #[cfg(any(
221 all(
222 any(target_arch = "x86", target_arch = "x86_64"),
223 target_feature = "fma"
224 ),
225 all(target_arch = "aarch64", target_feature = "neon")
226 ))]
227 {
228 h = f_fmla(v_hi, -v_hi, u);
229 }
230 #[cfg(not(any(
231 all(
232 any(target_arch = "x86", target_arch = "x86_64"),
233 target_feature = "fma"
234 ),
235 all(target_arch = "aarch64", target_feature = "neon")
236 )))]
237 {
238 let v_hi_sq = DoubleDouble::from_exact_mult(v_hi, v_hi);
239 h = (u - v_hi_sq.hi) - v_hi_sq.lo;
240 }
241
242 // Scale v_lo and v_hi by 2 from the formula:
243 // vh = v_hi * 2
244 // vl = 2*v_lo = h / v_hi.
245 let vh = v_hi * 2.0;
246 let vl = h / v_hi;
247
248 // Polynomial approximation:
249 // p ~ asin(sqrt(u))/sqrt(u)
250 let err = vh * f64::from_bits(0x3cc0000000000000);
251
252 let (p, err) = asin_eval(DoubleDouble::new(0.0, u), err);
253
254 // Perform computations in double-double arithmetic:
255 // asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p)
256 let r0 = DoubleDouble::quick_mult(DoubleDouble::new(vl, vh), p);
257
258 let mut r_hi;
259 let mut r_lo;
260 if x.is_sign_positive() {
261 r_hi = r0.hi;
262 r_lo = r0.lo;
263 } else {
264 let r = DoubleDouble::from_exact_add(PI.hi, -r0.hi);
265 r_hi = r.hi;
266 r_lo = (PI.lo - r0.lo) + r.lo;
267 }
268
269 let p = DoubleDouble::mult(DoubleDouble::new(r_lo, r_hi), INV_PI_DD);
270 r_hi = p.hi;
271 r_lo = p.lo;
272
273 let r_upper = r_hi + (r_lo + err);
274 let r_lower = r_hi + (r_lo - err);
275
276 if r_upper == r_lower {
277 return r_upper;
278 }
279
280 // Ziv's accuracy test failed, we redo the computations in Float128.
281 // Recalculate mod 1/64.
282 let idx = (u * f64::from_bits(0x4050000000000000)).round_finite() as usize;
283
284 // After the first step of Newton-Raphson approximating v = sqrt(u), we have
285 // that:
286 // sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
287 // v_lo = h / (2 * v_hi)
288 // With error:
289 // sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) )
290 // = -h^2 / (2*v * (sqrt(u) + v)^2).
291 // Since:
292 // (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u,
293 // we can add another correction term to (v_hi + v_lo) that is:
294 // v_ll = -h^2 / (2*v_hi * 4u)
295 // = -v_lo * (h / 4u)
296 // = -vl * (h / 8u),
297 // making the errors:
298 // sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3)
299 // well beyond 128-bit precision needed.
300
301 // Get the rounding error of vl = 2 * v_lo ~ h / vh
302 // Get full product of vh * vl
303 let vl_lo;
304 #[cfg(any(
305 all(
306 any(target_arch = "x86", target_arch = "x86_64"),
307 target_feature = "fma"
308 ),
309 all(target_arch = "aarch64", target_feature = "neon")
310 ))]
311 {
312 vl_lo = f_fmla(-v_hi, vl, h) / v_hi;
313 }
314 #[cfg(not(any(
315 all(
316 any(target_arch = "x86", target_arch = "x86_64"),
317 target_feature = "fma"
318 ),
319 all(target_arch = "aarch64", target_feature = "neon")
320 )))]
321 {
322 let vh_vl = DoubleDouble::from_exact_mult(v_hi, vl);
323 vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi;
324 }
325 let t = h * (-0.25) / u;
326 let vll = f_fmla(vl, t, vl_lo);
327 // m_v = -(v_hi + v_lo + v_ll).
328 let m_v_p = DyadicFloat128::new_from_f64(vl) + DyadicFloat128::new_from_f64(vll);
329 let mut m_v = DyadicFloat128::new_from_f64(vh) + m_v_p;
330 m_v.sign = if x.is_sign_negative() {
331 DyadicSign::Neg
332 } else {
333 DyadicSign::Pos
334 };
335
336 // Perform computations in Float128:
337 // acos(x) = (v_hi + v_lo + vll) * P(u) , when 0.5 <= x < 1,
338 // = pi - (v_hi + v_lo + vll) * P(u) , when -1 < x <= -0.5.
339 let y_f128 =
340 DyadicFloat128::new_from_f64(f_fmla(idx as f64, f64::from_bits(0xbf90000000000000), u));
341
342 let p_f128 = asin_eval_dyadic(y_f128, idx);
343 let mut r_f128 = m_v * p_f128;
344
345 if x.is_sign_negative() {
346 const PI_F128: DyadicFloat128 = DyadicFloat128 {
347 sign: DyadicSign::Pos,
348 exponent: -126,
349 mantissa: 0xc90fdaa2_2168c234_c4c6628b_80dc1cd1_u128,
350 };
351 r_f128 = PI_F128 + r_f128;
352 }
353
354 r_f128 = r_f128.quick_mul(&INV_PI_F128);
355
356 r_f128.fast_as_f64()
357}
358
359#[cfg(test)]
360mod tests {
361
362 use super::*;
363
364 #[test]
365 fn acospi_test() {
366 assert_eq!(f_acospi(0.5), 0.3333333333333333);
367 assert!(f_acospi(1.5).is_nan());
368 }
369}