pxfm/
acos.rs

1/*
2 * // Copyright (c) Radzivon Bartoshyk 6/2025. All rights reserved.
3 * //
4 * // Redistribution and use in source and binary forms, with or without modification,
5 * // are permitted provided that the following conditions are met:
6 * //
7 * // 1.  Redistributions of source code must retain the above copyright notice, this
8 * // list of conditions and the following disclaimer.
9 * //
10 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11 * // this list of conditions and the following disclaimer in the documentation
12 * // and/or other materials provided with the distribution.
13 * //
14 * // 3.  Neither the name of the copyright holder nor the names of its
15 * // contributors may be used to endorse or promote products derived from
16 * // this software without specific prior written permission.
17 * //
18 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29use crate::acospi::PI_OVER_TWO_F128;
30use crate::asin::asin_eval;
31use crate::asin_eval_dyadic::asin_eval_dyadic;
32use crate::common::f_fmla;
33use crate::double_double::DoubleDouble;
34use crate::dyadic_float::{DyadicFloat128, DyadicSign};
35use crate::round::RoundFinite;
36
37/// Computes acos(x)
38///
39/// Max found ULP 0.5
40pub fn f_acos(x: f64) -> f64 {
41    let x_e = (x.to_bits() >> 52) & 0x7ff;
42    const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64;
43
44    const PI_OVER_TWO: DoubleDouble = DoubleDouble::new(
45        f64::from_bits(0x3c91a62633145c07),
46        f64::from_bits(0x3ff921fb54442d18),
47    );
48
49    let x_abs = f64::from_bits(x.to_bits() & 0x7fff_ffff_ffff_ffff);
50
51    // |x| < 0.5.
52    if x_e < E_BIAS - 1 {
53        // |x| < 2^-55.
54        if x_e < E_BIAS - 55 {
55            // When |x| < 2^-55, acos(x) = pi/2
56            return (x_abs + f64::from_bits(0x35f0000000000000)) + PI_OVER_TWO.hi;
57        }
58
59        let x_sq = DoubleDouble::from_exact_mult(x, x);
60        let err = x_abs * f64::from_bits(0x3cc0000000000000);
61        // Polynomial approximation:
62        //   p ~ asin(x)/x
63        let (p, err) = asin_eval(x_sq, err);
64        // asin(x) ~ x * p
65        let r0 = DoubleDouble::from_exact_mult(x, p.hi);
66        // acos(x) = pi/2 - asin(x)
67        //         ~ pi/2 - x * p
68        //         = pi/2 - x * (p.hi + p.lo)
69        let r_hi = f_fmla(-x, p.hi, PI_OVER_TWO.hi);
70        // Use Dekker's 2SUM algorithm to compute the lower part.
71        let mut r_lo = ((PI_OVER_TWO.hi - r_hi) - r0.hi) - r0.lo;
72        r_lo = f_fmla(-x, p.lo, r_lo + PI_OVER_TWO.lo);
73
74        let r_upper = r_hi + (r_lo + err);
75        let r_lower = r_hi + (r_lo - err);
76
77        if r_upper == r_lower {
78            return r_upper;
79        }
80
81        return acos_less_0p5_hard(x, x_sq);
82    }
83
84    // |x| >= 0.5
85
86    let x_sign = if x.is_sign_negative() { -1.0 } else { 1.0 };
87
88    const PI: DoubleDouble = DoubleDouble::new(
89        f64::from_bits(0x3ca1a62633145c07),
90        f64::from_bits(0x400921fb54442d18),
91    );
92
93    // |x| >= 1
94    if x_e >= E_BIAS {
95        // x = +-1, asin(x) = +- pi/2
96        if x_abs == 1.0 {
97            // x = 1, acos(x) = 0,
98            // x = -1, acos(x) = pi
99            return if x == 1.0 {
100                0.0
101            } else {
102                f_fmla(-x_sign, PI.hi, PI.lo)
103            };
104        }
105        // |x| > 1, return NaN.
106        return f64::NAN;
107    }
108
109    // When |x| >= 0.5, we perform range reduction as follow:
110    //
111    // When 0.5 <= x < 1, let:
112    //   y = acos(x)
113    // We will use the double angle formula:
114    //   cos(2y) = 1 - 2 sin^2(y)
115    // and the complement angle identity:
116    //   x = cos(y) = 1 - 2 sin^2 (y/2)
117    // So:
118    //   sin(y/2) = sqrt( (1 - x)/2 )
119    // And hence:
120    //   y/2 = asin( sqrt( (1 - x)/2 ) )
121    // Equivalently:
122    //   acos(x) = y = 2 * asin( sqrt( (1 - x)/2 ) )
123    // Let u = (1 - x)/2, then:
124    //   acos(x) = 2 * asin( sqrt(u) )
125    // Moreover, since 0.5 <= x < 1:
126    //   0 < u <= 1/4, and 0 < sqrt(u) <= 0.5,
127    // And hence we can reuse the same polynomial approximation of asin(x) when
128    // |x| <= 0.5:
129    //   acos(x) ~ 2 * sqrt(u) * P(u).
130    //
131    // When -1 < x <= -0.5, we reduce to the previous case using the formula:
132    //   acos(x) = pi - acos(-x)
133    //           = pi - 2 * asin ( sqrt( (1 + x)/2 ) )
134    //           ~ pi - 2 * sqrt(u) * P(u),
135    // where u = (1 - |x|)/2.
136
137    // u = (1 - |x|)/2
138    let u = f_fmla(x_abs, -0.5, 0.5);
139    // v_hi + v_lo ~ sqrt(u).
140    // Let:
141    //   h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi)
142    // Then:
143    //   sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
144    //            ~ v_hi + h / (2 * v_hi)
145    // So we can use:
146    //   v_lo = h / (2 * v_hi).
147    let v_hi = u.sqrt();
148
149    let h;
150    #[cfg(any(
151        all(
152            any(target_arch = "x86", target_arch = "x86_64"),
153            target_feature = "fma"
154        ),
155        all(target_arch = "aarch64", target_feature = "neon")
156    ))]
157    {
158        h = f_fmla(v_hi, -v_hi, u);
159    }
160    #[cfg(not(any(
161        all(
162            any(target_arch = "x86", target_arch = "x86_64"),
163            target_feature = "fma"
164        ),
165        all(target_arch = "aarch64", target_feature = "neon")
166    )))]
167    {
168        let v_hi_sq = DoubleDouble::from_exact_mult(v_hi, v_hi);
169        h = (u - v_hi_sq.hi) - v_hi_sq.lo;
170    }
171
172    // Scale v_lo and v_hi by 2 from the formula:
173    //   vh = v_hi * 2
174    //   vl = 2*v_lo = h / v_hi.
175    let vh = v_hi * 2.0;
176    let vl = h / v_hi;
177
178    // Polynomial approximation:
179    //   p ~ asin(sqrt(u))/sqrt(u)
180    let err = vh * f64::from_bits(0x3cc0000000000000);
181
182    let (p, err) = asin_eval(DoubleDouble::new(0.0, u), err);
183
184    // Perform computations in double-double arithmetic:
185    //   asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p)
186    let r0 = DoubleDouble::quick_mult(DoubleDouble::new(vl, vh), p);
187
188    let r_hi;
189    let r_lo;
190    if x.is_sign_positive() {
191        r_hi = r0.hi;
192        r_lo = r0.lo;
193    } else {
194        let r = DoubleDouble::from_exact_add(PI.hi, -r0.hi);
195        r_hi = r.hi;
196        r_lo = (PI.lo - r0.lo) + r.lo;
197    }
198
199    let r_upper = r_hi + (r_lo + err);
200    let r_lower = r_hi + (r_lo - err);
201
202    if r_upper == r_lower {
203        return r_upper;
204    }
205
206    acos_hard(x, u, v_hi, h, vh, vl)
207}
208
209#[cold]
210#[inline(never)]
211fn acos_hard(x: f64, u: f64, v_hi: f64, h: f64, vh: f64, vl: f64) -> f64 {
212    // Ziv's accuracy test failed, we redo the computations in Float128.
213    // Recalculate mod 1/64.
214    let idx = (u * f64::from_bits(0x4050000000000000)).round_finite() as usize;
215
216    // After the first step of Newton-Raphson approximating v = sqrt(u), we have
217    // that:
218    //   sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
219    //      v_lo = h / (2 * v_hi)
220    // With error:
221    //   sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) )
222    //                           = -h^2 / (2*v * (sqrt(u) + v)^2).
223    // Since:
224    //   (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u,
225    // we can add another correction term to (v_hi + v_lo) that is:
226    //   v_ll = -h^2 / (2*v_hi * 4u)
227    //        = -v_lo * (h / 4u)
228    //        = -vl * (h / 8u),
229    // making the errors:
230    //   sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3)
231    // well beyond 128-bit precision needed.
232
233    // Get the rounding error of vl = 2 * v_lo ~ h / vh
234    // Get full product of vh * vl
235    let vl_lo;
236    #[cfg(any(
237        all(
238            any(target_arch = "x86", target_arch = "x86_64"),
239            target_feature = "fma"
240        ),
241        all(target_arch = "aarch64", target_feature = "neon")
242    ))]
243    {
244        vl_lo = f_fmla(-v_hi, vl, h) / v_hi;
245    }
246    #[cfg(not(any(
247        all(
248            any(target_arch = "x86", target_arch = "x86_64"),
249            target_feature = "fma"
250        ),
251        all(target_arch = "aarch64", target_feature = "neon")
252    )))]
253    {
254        let vh_vl = DoubleDouble::from_exact_mult(v_hi, vl);
255        vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi;
256    }
257    let t = h * (-0.25) / u;
258    let vll = f_fmla(vl, t, vl_lo);
259    let m_v_p = DyadicFloat128::new_from_f64(vl) + DyadicFloat128::new_from_f64(vll);
260    let mut m_v = DyadicFloat128::new_from_f64(vh) + m_v_p;
261    m_v.sign = if x.is_sign_negative() {
262        DyadicSign::Neg
263    } else {
264        DyadicSign::Pos
265    };
266
267    // Perform computations in Float128:
268    //   acos(x) = (v_hi + v_lo + vll) * P(u)         , when 0.5 <= x < 1,
269    //           = pi - (v_hi + v_lo + vll) * P(u)    , when -1 < x <= -0.5.
270    let y_f128 =
271        DyadicFloat128::new_from_f64(f_fmla(idx as f64, f64::from_bits(0xbf90000000000000), u));
272
273    let p_f128 = asin_eval_dyadic(y_f128, idx);
274    let mut r_f128 = m_v * p_f128;
275
276    if x.is_sign_negative() {
277        const PI_F128: DyadicFloat128 = DyadicFloat128 {
278            sign: DyadicSign::Pos,
279            exponent: -126,
280            mantissa: 0xc90fdaa2_2168c234_c4c6628b_80dc1cd1_u128,
281        };
282        r_f128 = PI_F128 + r_f128;
283    }
284
285    r_f128.fast_as_f64()
286}
287
288#[cold]
289#[inline(never)]
290fn acos_less_0p5_hard(x: f64, x_sq: DoubleDouble) -> f64 {
291    // Ziv's accuracy test failed, perform 128-bit calculation.
292
293    // Recalculate mod 1/64.
294    let idx = (x_sq.hi * f64::from_bits(0x4050000000000000)).round_finite() as usize;
295
296    // Get x^2 - idx/64 exactly.  When FMA is available, double-double
297    // multiplication will be correct for all rounding modes. Otherwise, we use
298    // Float128 directly.
299    let mut x_f128 = DyadicFloat128::new_from_f64(x);
300
301    let u: DyadicFloat128;
302    #[cfg(any(
303        all(
304            any(target_arch = "x86", target_arch = "x86_64"),
305            target_feature = "fma"
306        ),
307        all(target_arch = "aarch64", target_feature = "neon")
308    ))]
309    {
310        // u = x^2 - idx/64
311        let u_hi = DyadicFloat128::new_from_f64(f_fmla(
312            idx as f64,
313            f64::from_bits(0xbf90000000000000),
314            x_sq.hi,
315        ));
316        u = u_hi.quick_add(&DyadicFloat128::new_from_f64(x_sq.lo));
317    }
318
319    #[cfg(not(any(
320        all(
321            any(target_arch = "x86", target_arch = "x86_64"),
322            target_feature = "fma"
323        ),
324        all(target_arch = "aarch64", target_feature = "neon")
325    )))]
326    {
327        let x_sq_f128 = x_f128.quick_mul(&x_f128);
328        u = x_sq_f128.quick_add(&DyadicFloat128::new_from_f64(
329            idx as f64 * f64::from_bits(0xbf90000000000000),
330        ));
331    }
332
333    let p_f128 = asin_eval_dyadic(u, idx);
334    // Flip the sign of x_f128 to perform subtraction.
335    x_f128.sign = x_f128.sign.negate();
336    let r = PI_OVER_TWO_F128.quick_add(&x_f128.quick_mul(&p_f128));
337    r.fast_as_f64()
338}
339
340#[cfg(test)]
341mod tests {
342    use super::*;
343    #[test]
344    fn f_acos_test() {
345        assert_eq!(f_acos(0.7), 0.7953988301841436);
346        assert_eq!(f_acos(-0.1), 1.6709637479564565);
347        assert_eq!(f_acos(-0.4), 1.9823131728623846);
348    }
349}