moxcms/conversions/
lut4.rs

1/*
2 * // Copyright (c) Radzivon Bartoshyk 3/2025. All rights reserved.
3 * //
4 * // Redistribution and use in source and binary forms, with or without modification,
5 * // are permitted provided that the following conditions are met:
6 * //
7 * // 1.  Redistributions of source code must retain the above copyright notice, this
8 * // list of conditions and the following disclaimer.
9 * //
10 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11 * // this list of conditions and the following disclaimer in the documentation
12 * // and/or other materials provided with the distribution.
13 * //
14 * // 3.  Neither the name of the copyright holder nor the names of its
15 * // contributors may be used to endorse or promote products derived from
16 * // this software without specific prior written permission.
17 * //
18 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29use crate::conversions::katana::KatanaInitialStage;
30use crate::err::try_vec;
31use crate::profile::LutDataType;
32use crate::safe_math::{SafeMul, SafePowi};
33use crate::trc::lut_interp_linear_float;
34use crate::{
35    CmsError, DataColorSpace, Hypercube, InterpolationMethod, MalformedSize,
36    PointeeSizeExpressible, Stage, TransformOptions, Vector3f,
37};
38use num_traits::AsPrimitive;
39use std::marker::PhantomData;
40
41#[allow(unused)]
42#[derive(Default)]
43struct Lut4x3 {
44    linearization: [Vec<f32>; 4],
45    clut: Vec<f32>,
46    grid_size: u8,
47    output: [Vec<f32>; 3],
48    interpolation_method: InterpolationMethod,
49    pcs: DataColorSpace,
50}
51
52#[allow(unused)]
53#[derive(Default)]
54struct KatanaLut4x3<T: Copy + PointeeSizeExpressible + AsPrimitive<f32>> {
55    linearization: [Vec<f32>; 4],
56    clut: Vec<f32>,
57    grid_size: u8,
58    output: [Vec<f32>; 3],
59    interpolation_method: InterpolationMethod,
60    pcs: DataColorSpace,
61    _phantom: PhantomData<T>,
62    bit_depth: usize,
63}
64
65#[allow(unused)]
66impl Lut4x3 {
67    fn transform_impl<Fetch: Fn(f32, f32, f32, f32) -> Vector3f>(
68        &self,
69        src: &[f32],
70        dst: &mut [f32],
71        fetch: Fetch,
72    ) -> Result<(), CmsError> {
73        let linearization_0 = &self.linearization[0];
74        let linearization_1 = &self.linearization[1];
75        let linearization_2 = &self.linearization[2];
76        let linearization_3 = &self.linearization[3];
77        for (dest, src) in dst.chunks_exact_mut(3).zip(src.chunks_exact(4)) {
78            debug_assert!(self.grid_size as i32 >= 1);
79            let linear_x = lut_interp_linear_float(src[0], linearization_0);
80            let linear_y = lut_interp_linear_float(src[1], linearization_1);
81            let linear_z = lut_interp_linear_float(src[2], linearization_2);
82            let linear_w = lut_interp_linear_float(src[3], linearization_3);
83
84            let clut = fetch(linear_x, linear_y, linear_z, linear_w);
85
86            let pcs_x = lut_interp_linear_float(clut.v[0], &self.output[0]);
87            let pcs_y = lut_interp_linear_float(clut.v[1], &self.output[1]);
88            let pcs_z = lut_interp_linear_float(clut.v[2], &self.output[2]);
89            dest[0] = pcs_x;
90            dest[1] = pcs_y;
91            dest[2] = pcs_z;
92        }
93        Ok(())
94    }
95}
96
97macro_rules! define_lut4_dispatch {
98    ($dispatcher: ident) => {
99        impl Stage for $dispatcher {
100            fn transform(&self, src: &[f32], dst: &mut [f32]) -> Result<(), CmsError> {
101                let l_tbl = Hypercube::new_checked(&self.clut, self.grid_size as usize, 3)?;
102
103                // If Source PCS is LAB trilinear should be used
104                if self.pcs == DataColorSpace::Lab || self.pcs == DataColorSpace::Xyz {
105                    return self
106                        .transform_impl(src, dst, |x, y, z, w| l_tbl.quadlinear_vec3(x, y, z, w));
107                }
108
109                match self.interpolation_method {
110                    #[cfg(feature = "options")]
111                    InterpolationMethod::Tetrahedral => {
112                        self.transform_impl(src, dst, |x, y, z, w| l_tbl.tetra_vec3(x, y, z, w))?;
113                    }
114                    #[cfg(feature = "options")]
115                    InterpolationMethod::Pyramid => {
116                        self.transform_impl(src, dst, |x, y, z, w| l_tbl.pyramid_vec3(x, y, z, w))?;
117                    }
118                    #[cfg(feature = "options")]
119                    InterpolationMethod::Prism => {
120                        self.transform_impl(src, dst, |x, y, z, w| l_tbl.prism_vec3(x, y, z, w))?
121                    }
122                    InterpolationMethod::Linear => {
123                        self.transform_impl(src, dst, |x, y, z, w| {
124                            l_tbl.quadlinear_vec3(x, y, z, w)
125                        })?
126                    }
127                }
128                Ok(())
129            }
130        }
131    };
132}
133
134impl<T: Copy + PointeeSizeExpressible + AsPrimitive<f32>> KatanaLut4x3<T> {
135    fn to_pcs_impl<Fetch: Fn(f32, f32, f32, f32) -> Vector3f>(
136        &self,
137        input: &[T],
138        fetch: Fetch,
139    ) -> Result<Vec<f32>, CmsError> {
140        if input.len() % 4 != 0 {
141            return Err(CmsError::LaneMultipleOfChannels);
142        }
143        let norm_value = if T::FINITE {
144            1.0 / ((1u32 << self.bit_depth) - 1) as f32
145        } else {
146            1.0
147        };
148        let mut dst = try_vec![0.; (input.len() / 4) * 3];
149        let linearization_0 = &self.linearization[0];
150        let linearization_1 = &self.linearization[1];
151        let linearization_2 = &self.linearization[2];
152        let linearization_3 = &self.linearization[3];
153        for (dest, src) in dst.chunks_exact_mut(3).zip(input.chunks_exact(4)) {
154            let linear_x = lut_interp_linear_float(src[0].as_() * norm_value, linearization_0);
155            let linear_y = lut_interp_linear_float(src[1].as_() * norm_value, linearization_1);
156            let linear_z = lut_interp_linear_float(src[2].as_() * norm_value, linearization_2);
157            let linear_w = lut_interp_linear_float(src[3].as_() * norm_value, linearization_3);
158
159            let clut = fetch(linear_x, linear_y, linear_z, linear_w);
160
161            let pcs_x = lut_interp_linear_float(clut.v[0], &self.output[0]);
162            let pcs_y = lut_interp_linear_float(clut.v[1], &self.output[1]);
163            let pcs_z = lut_interp_linear_float(clut.v[2], &self.output[2]);
164            dest[0] = pcs_x;
165            dest[1] = pcs_y;
166            dest[2] = pcs_z;
167        }
168        Ok(dst)
169    }
170}
171
172impl<T: Copy + PointeeSizeExpressible + AsPrimitive<f32>> KatanaInitialStage<f32, T>
173    for KatanaLut4x3<T>
174{
175    fn to_pcs(&self, input: &[T]) -> Result<Vec<f32>, CmsError> {
176        if input.len() % 4 != 0 {
177            return Err(CmsError::LaneMultipleOfChannels);
178        }
179        let l_tbl = Hypercube::new_checked(&self.clut, self.grid_size as usize, 3)?;
180
181        // If Source PCS is LAB trilinear should be used
182        if self.pcs == DataColorSpace::Lab || self.pcs == DataColorSpace::Xyz {
183            return self.to_pcs_impl(input, |x, y, z, w| l_tbl.quadlinear_vec3(x, y, z, w));
184        }
185
186        match self.interpolation_method {
187            #[cfg(feature = "options")]
188            InterpolationMethod::Tetrahedral => {
189                self.to_pcs_impl(input, |x, y, z, w| l_tbl.tetra_vec3(x, y, z, w))
190            }
191            #[cfg(feature = "options")]
192            InterpolationMethod::Pyramid => {
193                self.to_pcs_impl(input, |x, y, z, w| l_tbl.pyramid_vec3(x, y, z, w))
194            }
195            #[cfg(feature = "options")]
196            InterpolationMethod::Prism => {
197                self.to_pcs_impl(input, |x, y, z, w| l_tbl.prism_vec3(x, y, z, w))
198            }
199            InterpolationMethod::Linear => {
200                self.to_pcs_impl(input, |x, y, z, w| l_tbl.quadlinear_vec3(x, y, z, w))
201            }
202        }
203    }
204}
205
206define_lut4_dispatch!(Lut4x3);
207
208fn make_lut_4x3(
209    lut: &LutDataType,
210    options: TransformOptions,
211    pcs: DataColorSpace,
212) -> Result<Lut4x3, CmsError> {
213    // There is 4 possible cases:
214    // - All curves are non-linear
215    // - Linearization curves are non-linear, but gamma is linear
216    // - Gamma curves are non-linear, but linearization is linear
217    // - All curves linear
218    let clut_length: usize = (lut.num_clut_grid_points as usize)
219        .safe_powi(lut.num_input_channels as u32)?
220        .safe_mul(lut.num_output_channels as usize)?;
221
222    let clut_table = lut.clut_table.to_clut_f32();
223    if clut_table.len() != clut_length {
224        return Err(CmsError::MalformedClut(MalformedSize {
225            size: clut_table.len(),
226            expected: clut_length,
227        }));
228    }
229
230    let linearization_table = lut.input_table.to_clut_f32();
231
232    if linearization_table.len() < lut.num_input_table_entries as usize * 4 {
233        return Err(CmsError::MalformedCurveLutTable(MalformedSize {
234            size: linearization_table.len(),
235            expected: lut.num_input_table_entries as usize * 4,
236        }));
237    }
238
239    let lin_curve0 = linearization_table[0..lut.num_input_table_entries as usize].to_vec();
240    let lin_curve1 = linearization_table
241        [lut.num_input_table_entries as usize..lut.num_input_table_entries as usize * 2]
242        .to_vec();
243    let lin_curve2 = linearization_table
244        [lut.num_input_table_entries as usize * 2..lut.num_input_table_entries as usize * 3]
245        .to_vec();
246    let lin_curve3 = linearization_table
247        [lut.num_input_table_entries as usize * 3..lut.num_input_table_entries as usize * 4]
248        .to_vec();
249
250    let gamma_table = lut.output_table.to_clut_f32();
251
252    if gamma_table.len() < lut.num_output_table_entries as usize * 3 {
253        return Err(CmsError::MalformedCurveLutTable(MalformedSize {
254            size: gamma_table.len(),
255            expected: lut.num_output_table_entries as usize * 3,
256        }));
257    }
258
259    let gamma_curve0 = gamma_table[..lut.num_output_table_entries as usize].to_vec();
260    let gamma_curve1 = gamma_table
261        [lut.num_output_table_entries as usize..lut.num_output_table_entries as usize * 2]
262        .to_vec();
263    let gamma_curve2 = gamma_table
264        [lut.num_output_table_entries as usize * 2..lut.num_output_table_entries as usize * 3]
265        .to_vec();
266
267    let transform = Lut4x3 {
268        linearization: [lin_curve0, lin_curve1, lin_curve2, lin_curve3],
269        interpolation_method: options.interpolation_method,
270        pcs,
271        clut: clut_table,
272        grid_size: lut.num_clut_grid_points,
273        output: [gamma_curve0, gamma_curve1, gamma_curve2],
274    };
275    Ok(transform)
276}
277
278fn stage_lut_4x3(
279    lut: &LutDataType,
280    options: TransformOptions,
281    pcs: DataColorSpace,
282) -> Result<Box<dyn Stage>, CmsError> {
283    let lut = make_lut_4x3(lut, options, pcs)?;
284    let transform = Lut4x3 {
285        linearization: lut.linearization,
286        interpolation_method: lut.interpolation_method,
287        pcs: lut.pcs,
288        clut: lut.clut,
289        grid_size: lut.grid_size,
290        output: lut.output,
291    };
292    Ok(Box::new(transform))
293}
294
295pub(crate) fn katana_input_stage_lut_4x3<
296    T: Copy + PointeeSizeExpressible + AsPrimitive<f32> + Send + Sync,
297>(
298    lut: &LutDataType,
299    options: TransformOptions,
300    pcs: DataColorSpace,
301    bit_depth: usize,
302) -> Result<Box<dyn KatanaInitialStage<f32, T> + Send + Sync>, CmsError> {
303    // There is 4 possible cases:
304    // - All curves are non-linear
305    // - Linearization curves are non-linear, but gamma is linear
306    // - Gamma curves are non-linear, but linearization is linear
307    // - All curves linear
308    let lut = make_lut_4x3(lut, options, pcs)?;
309
310    let transform = KatanaLut4x3::<T> {
311        linearization: lut.linearization,
312        interpolation_method: lut.interpolation_method,
313        pcs: lut.pcs,
314        clut: lut.clut,
315        grid_size: lut.grid_size,
316        output: lut.output,
317        _phantom: PhantomData,
318        bit_depth,
319    };
320    Ok(Box::new(transform))
321}
322
323pub(crate) fn create_lut4_norm_samples<const SAMPLES: usize>() -> Vec<f32> {
324    let lut_size: u32 = (4 * SAMPLES * SAMPLES * SAMPLES * SAMPLES) as u32;
325
326    let mut src = Vec::with_capacity(lut_size as usize);
327
328    let recpeq = 1f32 / (SAMPLES - 1) as f32;
329    for k in 0..SAMPLES {
330        for c in 0..SAMPLES {
331            for m in 0..SAMPLES {
332                for y in 0..SAMPLES {
333                    src.push(c as f32 * recpeq);
334                    src.push(m as f32 * recpeq);
335                    src.push(y as f32 * recpeq);
336                    src.push(k as f32 * recpeq);
337                }
338            }
339        }
340    }
341    src
342}
343
344pub(crate) fn create_lut4<const SAMPLES: usize>(
345    lut: &LutDataType,
346    options: TransformOptions,
347    pcs: DataColorSpace,
348) -> Result<Vec<f32>, CmsError> {
349    if lut.num_input_channels != 4 {
350        return Err(CmsError::UnsupportedProfileConnection);
351    }
352    let lut_size: u32 = (4 * SAMPLES * SAMPLES * SAMPLES * SAMPLES) as u32;
353
354    let src = create_lut4_norm_samples::<SAMPLES>();
355    let mut dest = try_vec![0.; (lut_size as usize) / 4 * 3];
356
357    let lut_stage = stage_lut_4x3(lut, options, pcs)?;
358    lut_stage.transform(&src, &mut dest)?;
359    Ok(dest)
360}