moxcms/
chad.rs

1/*
2 * // Copyright (c) Radzivon Bartoshyk 2/2025. All rights reserved.
3 * //
4 * // Redistribution and use in source and binary forms, with or without modification,
5 * // are permitted provided that the following conditions are met:
6 * //
7 * // 1.  Redistributions of source code must retain the above copyright notice, this
8 * // list of conditions and the following disclaimer.
9 * //
10 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11 * // this list of conditions and the following disclaimer in the documentation
12 * // and/or other materials provided with the distribution.
13 * //
14 * // 3.  Neither the name of the copyright holder nor the names of its
15 * // contributors may be used to endorse or promote products derived from
16 * // this software without specific prior written permission.
17 * //
18 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29use crate::matrix::{Matrix3f, Vector3f, Xyz};
30use crate::{Chromaticity, Matrix3d, Vector3d, XyY};
31
32pub(crate) const BRADFORD_D: Matrix3d = Matrix3d {
33    v: [
34        [0.8951, 0.2664, -0.1614],
35        [-0.7502, 1.7135, 0.0367],
36        [0.0389, -0.0685, 1.0296],
37    ],
38};
39
40pub(crate) const BRADFORD_F: Matrix3f = BRADFORD_D.to_f32();
41
42#[inline]
43pub(crate) const fn compute_chromatic_adaption(
44    source_white_point: Xyz,
45    dest_white_point: Xyz,
46    chad: Matrix3f,
47) -> Matrix3f {
48    let cone_source_xyz = Vector3f {
49        v: [
50            source_white_point.x,
51            source_white_point.y,
52            source_white_point.z,
53        ],
54    };
55    let cone_source_rgb = chad.mul_vector(cone_source_xyz);
56
57    let cone_dest_xyz = Vector3f {
58        v: [dest_white_point.x, dest_white_point.y, dest_white_point.z],
59    };
60    let cone_dest_rgb = chad.mul_vector(cone_dest_xyz);
61
62    let cone = Matrix3f {
63        v: [
64            [cone_dest_rgb.v[0] / cone_source_rgb.v[0], 0., 0.],
65            [0., cone_dest_rgb.v[1] / cone_source_rgb.v[1], 0.],
66            [0., 0., cone_dest_rgb.v[2] / cone_source_rgb.v[2]],
67        ],
68    };
69
70    let chad_inv = chad.inverse();
71
72    let p0 = cone.mat_mul_const(chad);
73    chad_inv.mat_mul_const(p0)
74}
75
76#[inline]
77pub(crate) const fn compute_chromatic_adaption_d(
78    source_white_point: Xyz,
79    dest_white_point: Xyz,
80    chad: Matrix3d,
81) -> Matrix3d {
82    let cone_source_xyz = Vector3d {
83        v: [
84            source_white_point.x as f64,
85            source_white_point.y as f64,
86            source_white_point.z as f64,
87        ],
88    };
89    let cone_source_rgb = chad.mul_vector(cone_source_xyz);
90
91    let cone_dest_xyz = Vector3d {
92        v: [
93            dest_white_point.x as f64,
94            dest_white_point.y as f64,
95            dest_white_point.z as f64,
96        ],
97    };
98    let cone_dest_rgb = chad.mul_vector(cone_dest_xyz);
99
100    let cone = Matrix3d {
101        v: [
102            [cone_dest_rgb.v[0] / cone_source_rgb.v[0], 0., 0.],
103            [0., cone_dest_rgb.v[1] / cone_source_rgb.v[1], 0.],
104            [0., 0., cone_dest_rgb.v[2] / cone_source_rgb.v[2]],
105        ],
106    };
107
108    let chad_inv = chad.inverse();
109
110    let p0 = cone.mat_mul_const(chad);
111    chad_inv.mat_mul_const(p0)
112}
113
114pub const fn adaption_matrix(source_illumination: Xyz, target_illumination: Xyz) -> Matrix3f {
115    compute_chromatic_adaption(source_illumination, target_illumination, BRADFORD_F)
116}
117
118pub const fn adaption_matrix_d(source_illumination: Xyz, target_illumination: Xyz) -> Matrix3d {
119    compute_chromatic_adaption_d(source_illumination, target_illumination, BRADFORD_D)
120}
121
122pub const fn adapt_to_d50(r: Matrix3f, source_white_pt: XyY) -> Matrix3f {
123    adapt_to_illuminant(r, source_white_pt, Chromaticity::D50.to_xyz())
124}
125
126pub const fn adapt_to_d50_d(r: Matrix3d, source_white_pt: XyY) -> Matrix3d {
127    adapt_to_illuminant_d(r, source_white_pt, Chromaticity::D50.to_xyz())
128}
129
130pub const fn adapt_to_illuminant(
131    r: Matrix3f,
132    source_white_pt: XyY,
133    illuminant_xyz: Xyz,
134) -> Matrix3f {
135    let bradford = adaption_matrix(source_white_pt.to_xyz(), illuminant_xyz);
136    bradford.mat_mul_const(r)
137}
138
139pub const fn adapt_to_illuminant_d(
140    r: Matrix3d,
141    source_white_pt: XyY,
142    illuminant_xyz: Xyz,
143) -> Matrix3d {
144    let bradford = adaption_matrix_d(source_white_pt.to_xyz(), illuminant_xyz);
145    bradford.mat_mul_const(r)
146}
147
148pub const fn adapt_to_illuminant_xyz(
149    r: Matrix3f,
150    source_white_pt: Xyz,
151    illuminant_xyz: Xyz,
152) -> Matrix3f {
153    if source_white_pt.y == 0.0 {
154        return r;
155    }
156
157    let bradford = adaption_matrix(source_white_pt, illuminant_xyz);
158    bradford.mat_mul_const(r)
159}
160
161pub const fn adapt_to_illuminant_xyz_d(
162    r: Matrix3d,
163    source_white_pt: Xyz,
164    illuminant_xyz: Xyz,
165) -> Matrix3d {
166    if source_white_pt.y == 0.0 {
167        return r;
168    }
169
170    let bradford = adaption_matrix_d(source_white_pt, illuminant_xyz);
171    bradford.mat_mul_const(r)
172}